Skip to main content
Log in

Approaches for refining heterologous protein production in filamentous fungi

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fungi combine the advantages of a microbial system such as a simple fermentability with the capability of secreting proteins that are modified according to a general eukaryotic scheme. Filamentous fungi such as Aspergillus niger efficiently secrete genuine proteins but the secretion of recombinant proteins turned out be a difficult task. Aspergillus niger is an attractive organism because of its high secretion capacity and is frequently used as a model organism. Whereas high production yields can be obtained when homologous proteins are expressed, much lower amounts are obtained with the production of heterologous proteins. To fully exploit the potential of filamentous fungi, understanding of the molecular genetics, their physiology, and the glycosylation metabolism has to be investigated and clarified in more detail. This review summarizes recent developments in heterologous protein production by filamentous fungi and also generalizes the possibilities of improving the protein production by various genetic and bioprocessing approaches, thereby easing recognition of filamentous fungi as a relevant and reliable expression platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aifa MS, Sayadi S, Gargouri A (1999) Heterologous expression of lignin peroxidase of Phanerochaete chrysosporium in Aspergillus niger. Biotechnol Lett 21:849–853

    CAS  Google Scholar 

  • Amanullah A, Christensen LH, Hansen K et al (2002) Dependence of morphology on agitation intensity in fed-batch cultures of Aspergillus oryzae and its implications for recombinant protein production. Biotechnol Bioeng 7:815–826

    Google Scholar 

  • AMFEP (2004) Association of Manufacturers and Formulators of Enzyme Products (Online) http://www. AMFEP. org

  • Archer D (2000) Filamentous fungi as microbial cell factories for food use. Curr Opin Biotechnol 11:478–483

    CAS  Google Scholar 

  • Archer DB, Peberby JF (1997) The molecular biology of secreted enzyme production by fungi. Crit Rev Biotechnol 17:273–306

    CAS  Google Scholar 

  • Archer DB, Jeenes DJ, MacKenzie DA et al (1990) Hen egg white lysozyme expressed in and secreted from Aspergillus niger is correctly processed and folded. Biotechnology 8:741–745

    CAS  Google Scholar 

  • Archer DB, Mckenzie DA, Jeenes DJ et al (1992) Proteolytic degradation of heterologous protein expressed in Aspergillus niger. Biotechnol Lett 14:357–362

    CAS  Google Scholar 

  • Archer DB, Jeenes DJ, Mackenzie DA (1994) Strategies for improving heterologous protein production from filamentous fungi. Antonie Van Leeuwenhoek 65:245–250

    CAS  Google Scholar 

  • Bai Z, Harvey LM, White S et al (2004) Effects of oxidative stress on production of heterologous and native protein, and culture morphology in batch and chemostat cultures of Aspergillus niger (B1-D). Enzyme Microb Technol 34:10–21

    CAS  Google Scholar 

  • Banerjee AC, Kundu A, Ghosh SK (2003) Genetic manipulation of filamentous fungi. In: Roussos S (ed) New horizons in biotechnology. Kluwer, Dordrecht (Neth), pp 193–198

    Google Scholar 

  • Berka RM, Ward M, Wilson LJ et al (1990) Molecular cloning and deletion of the gene encoding aspergillopepsin A from Aspergillus awamori. Gene 86:153–162

    CAS  Google Scholar 

  • Bhargava S, Wenger KS, Marten MR (2003) Pulsed addition of limiting-carbon during Aspergillus oryzae fermentation leads to improved productivity of a recombinant enzyme. Biotechnol Bioeng 82:111–117

    CAS  Google Scholar 

  • Brodsky JL, McCracken AA (1999) ER protein quality control and proteasome-mediated protein degradation. Semin Cell Dev Biol 10:507–513

    CAS  Google Scholar 

  • Broekhuijsen MP, Mattern IE, Contreras R et al (1993) Secretion of heterologous proteins by Aspergillus niger: production of active human interleukin-6 in a protease deficient mutant by KEX2-like processing of a glucoamylase-hIL6 fusion protein. J Biotechnol 31:135–145

    CAS  Google Scholar 

  • Bucher P (1990) Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol 212:563–578

    CAS  Google Scholar 

  • Chapman R, Sidrauski C, Walter P (1998) Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu Rev Cell Dev Biol 14:459–485

    CAS  Google Scholar 

  • Conesa A, Punt PJ, Luijk N et al (2001) The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33:155–171

    CAS  Google Scholar 

  • Conesa A, Jeenes D, Archer DB et al (2002) Calnexin overexpression increases manganese peroxidase production in Aspergillus niger. Appl Environ Microbiol 68:846–851

    CAS  Google Scholar 

  • Contreras R, Carrez D, Kinghorn JR et al (1991) Efficient KEX2-like processing of a glucoamylase- interleukin-6 fusion protein by A. nidulans and secretion of mature interleukin-6. Biotechnology 9:378–380

    CAS  Google Scholar 

  • Cowan D (1996) Industrial enzyme technology. Trends Biotechnol 14:177–178

    CAS  Google Scholar 

  • Cudna RE, Dickson AJ (2003) Endoplasmic reticulum signaling as a determinant of recombinant protein expression. Biotechnol Bioeng 81:56–65

    CAS  Google Scholar 

  • Cui YQ, Van der Lans RGJM, Luyben KCAM (1997) Effect of agitation intensities on fungal morphology of submerged fermentation. Biotechnol Bioeng 55:715–726

    CAS  Google Scholar 

  • Denison SH (2000) pH regulation of gene expression in fungi. Fungal Genet Biol 29:61–71

    CAS  Google Scholar 

  • Dunn-Coleman NS, Bloebaum P, Berka R et al (1991) Commercial levels of chymosin production by Aspergillus. Biotechnology 9:976–981

    CAS  Google Scholar 

  • Durand H, Clanet M, Tiraby G (1988) Genetic improvement of Trichoderma reesei for large-scale cellulase production. Enzyme Microb Technol 10:341–345

    CAS  Google Scholar 

  • Elledge S, Davis RW (1988) A family of versatile centromeric vectors designed for use in the sectoring-shuffle mutagenesis assay in Saccharomyces cerevisiae. Gene 70:303–312

    CAS  Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340:245–246

    CAS  Google Scholar 

  • Fincham JR (1989) Transformation in fungi. Microbiol Rev 53:148–170

    CAS  Google Scholar 

  • Finkelstein DB, Ball C (1992) Biotechnology of filamentous fungi. Butterworth-Heinemann, Boston, pp 221–416

    Google Scholar 

  • Finkelstein DB, Rambosek J, Crawford MS (1989) Protein secretion in Aspergillus niger. In: Hershberger CL, Queener SW, Hegeman G et al (eds) Genetics and molecular biology of industrial microorganisms. American Society for Microbiology, Washington DC, pp 295–300

    Google Scholar 

  • Fox SR, Patel UA, Yap MG et al (2004) Maximizing interferon gamma production by Chinese hamster ovary cells through temperature shift optimization: experimental and modeling. Biotechnol Bioeng 85:177–184

    CAS  Google Scholar 

  • Gasser B, Mattanovich D (2007) Antibody production with yeasts and filamentous fungi: on the road to large scale? Biotechnol Lett 29:201–212

    CAS  Google Scholar 

  • Gemgross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. NatCri Rev Biotechnol Biotechnol 22:1409–1414

    Google Scholar 

  • Gething MJ (1999) Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol 10:465–472

    CAS  Google Scholar 

  • Gibbs PA, Seviour RJ, Schmid F (2000) Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 20:17–48

    CAS  Google Scholar 

  • Goosen T, Jorgensen TR, Iversen JJL et al (2005) Unfolded protein response in Aspergillus niger chemostat fermentations. Fungal Genet Newsl 52:83

    Google Scholar 

  • Gouka RJ, Hessing JG, Punt PJ et al (1996) An expression system based on the promoter region of the Aspergillus awamori 1, 4-beta-endoxylanase A gene. Appl Microbiol Biotechnol 46:28–35

    CAS  Google Scholar 

  • Gouka RJ, Punt PJ, Van den Hondel CA (1997a) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47:1–11

    CAS  Google Scholar 

  • Gouka RJ, Punt PJ, Van den Hondel CA (1997b) Glucoamylase gene fusions alleviate limitations for protein production in Aspergillus awamori at the transcriptional and (post) translational levels. Appl Environ Microbiol 63:488–497

    CAS  Google Scholar 

  • Grimm LH, Kelly S, Krull R, Hempel DC (2005) Morphology and productivity of filamentous fungi. Appl Microbiol Biotechnol 20:17–48

    Google Scholar 

  • Gyamerah M, Merichetti G, Adedayo O, Scharer JM, Moo-Young M (2002) Bioprocessing strategies for improving hen egg-white lysozyme (HEWL) production by recombinant Aspergillus niger (HEWLWT-13–16). Appl Microbiol Biotechnol 60:403–407

    CAS  Google Scholar 

  • Harkki A, Mantyla A, Penttila M et al (1991) Genetic engineering of Trichoderma to produce strains with novel cellulase profiles. Enzym Microb Technol 3:227–233

    Google Scholar 

  • Hata Y, Tsuchiya K, Kitamoto K et al (1991) Nucleotide sequence and expression of the glucoamylase-encoding gene (glaA) from Aspergillus oryzae. Gene 108:145–150

    CAS  Google Scholar 

  • Heogh I, Patkar S, Halkier T et al (1995) Two lipases from Candida Antarctica—cloning and expression in Aspergillus oryzae. Can J Bot 73:869–875

    Google Scholar 

  • Jeenes DJ, Mackenzie DA, Roberts IN et al (1991) Heterologous protein production by filamentous fungi. Biotechnol Genet Eng Rev 9:327–367

    CAS  Google Scholar 

  • Jeenes DJ, Marczinke B, MacKenzie DA et al (1993) A truncated glucoamylase gene fusion for heterologous protein secretion from Aspergillus niger. FEMS Microbiol Lett 107:267–271

    CAS  Google Scholar 

  • Jeenes DJ, Pfaller R, Archer DB (1997) Isolation and characterization of a novel stress inducible PDI family gene from A. niger. Gene 194:151–156

    Google Scholar 

  • Joutsjoki VV, Torkkeli TK, Nevalainen HM (1993) Transformation of T. reesei with the Hormoconis resinae glucoamylase P (gam P) gene: Production of a heterologous glucoamylase by Trichoderma reesei. Curr Genet 24:223–228

    CAS  Google Scholar 

  • Katz ME, Flynn PK, VanKuyk PA et al (1996) Mutations affecting extracellular protease production in the filamentous fungus Aspergillus nidulans. Mol Gen Genet 250:715–724

    CAS  Google Scholar 

  • Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233

    CAS  Google Scholar 

  • Keranen S, Penttila M (1995) Production of recombinant proteins in the filamentous fungus Trichoderma reesei. Curr Opin Biotechnol 6:534–537

    CAS  Google Scholar 

  • Kolar M, Punt PJ, Van den Hondel CAMJJ et al (1988) Transformation of Penicillium chrysogenum using dominant selection markers and expression of an Escherichia coli lacZ fusion gene. Gene 62:127–134

    CAS  Google Scholar 

  • Kruszewska JS, Butterweck AH, Migdalski A et al (1999) Overexpression of the Saccharomyces cervisiae mannosylphosphodolichol synthase encoding gene in T. reesei results in an increased level of protein secretion and abnormal cell ultrastructure. Appl Environ Microbiol 65:2382–2387

    CAS  Google Scholar 

  • Li ZJ, Shukla V, Fordyce AP et al (2000) Fungal morphology and fragmentation behavior in a fed-batch Aspergillus oryzae fermentation at the production scale. Biotechnol Bioeng 70:300–312

    CAS  Google Scholar 

  • Li ZJ, Shukla V, Wenger KS et al (2002) Effects of increased impeller power in a production-scale Aspergillus oryzae fermentation. Biotechnol Prog 18:437–444

    CAS  Google Scholar 

  • Li Q, Harvey LM, McNeil B (2008) The effects of bioprocess parameters on extracellular proteases in a recombinant Aspergillus niger B1-D. Appl Microbiol Biotechnol 78:333–341

    CAS  Google Scholar 

  • Liu F, Li W, Ridgway D et al (1998) Inhibition of extracellular protease secretion by Aspergillus niger using cell immobilization. Biotechnol Lett 20(6):539–542

    CAS  Google Scholar 

  • Liu L, Liu J, Qiu RX et al (2003) Improving heterologous gene expression in Aspergillus niger by introducing multiple copies of protein- binding sequence containing CCAAT to the promoter. Lett Appl Microbiol 36:358–361

    CAS  Google Scholar 

  • Machida M (2002) Progress of Aspergillus oryzae genomics. Adv Appl Microbiol 51:81–106

    CAS  Google Scholar 

  • Macrae WD, Buxton FP, Gwynne DI, Davies RW (1993) Heterologous protein secretion directed by a repressible acid phosphatase system of A. nidulans. Gene 132:193–198

    CAS  Google Scholar 

  • Mantyla A, Paloheimo M, Suominen P (1998) Industrial mutant and recombinant strains of Trichoderma reesei. In: Harman GE, Kubicek CP (eds) Trichoderma and gliocladium, vol 2. Taylor and Francis, London, pp 291–309

    Google Scholar 

  • Maras M, Van Die I, Contreras R et al (1999) Filamentous fungi as production organisms for glycoproteins of bio-medical interest. Glycoconj J 16:99–107

    CAS  Google Scholar 

  • Mattern IE, Van Noort JM, Van den Berg P et al (1992) Isolation and characterisation of mutants of A. niger deficient in extracellular proteases. Mol Gen Genet 234:332–336

    CAS  Google Scholar 

  • Minetoki T, Gomi K, Kitamoto K et al (1995) Nucleotide sequence and expression of alpha-glucosidase-encoding gene (agdA) from Aspergillus oryzae. Biosci Biotechnol Biochem 59:1516–1521

    CAS  Google Scholar 

  • Morita S, Kuriyama M, Nakatsu M et al (1994) High level expression of Fusarium alkaline protease gene in Acremonium chrysogenum. Biosci Biotechnol Biochem 58:627–630

    CAS  Google Scholar 

  • Mulder HJ, Saloheimo M, Penttila M et al (2004) The transcription factor overexpression increases manganese peroxidase production in Aspergillus niger. Appl Environ Microbiol 68:846–851

    Google Scholar 

  • Muller C (2001) Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis. Ph.D. thesis, Denmark Technical University, Lyngby, Denmark

  • Nevalainen KMH, Valentino SJT, Bergquis PL (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23:468–474

    CAS  Google Scholar 

  • Ngiam C, Jeenes DJ, Punt PJ et al (2000) Characterization of a foldase, protein disulfide isomerase A, in the protein secretory pathway of Aspergillus niger. Appl Environ Microbiol 66:775–782

    CAS  Google Scholar 

  • Nyssonen E, Keranen S (1995) Multiple roles of the cellulase CBH1 in enhancing production of fusion antibodies by the filamentous fungus Trichoderma reesei. Curr Genet 28:71–79

    Google Scholar 

  • O’Donnell D, Wang L, Xu J et al (2001) Enhanced heterologous protein production in Aspergillus niger through pH control of extracellular protease activity. Biochem Eng J 8:187–193

    Google Scholar 

  • Pachlinger R, Mitterbauer R, Adam G et al (2005) Metabolically independent and accurately adjustable Aspergillus sp. expression system. Appl Environ Microb 71:672–678

    CAS  Google Scholar 

  • Parodi AJ (1999) Reglucosylation of glycoproteins and quality control of glycoprotein folding in the endoplasmic reticulum of yeast cells. Biochim Biophys Acta 1426:287–295

    CAS  Google Scholar 

  • Pedersen H, Beyer M, Nielsen J (2000) Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger. Appl Microbiol Biotechnol 53:272–277

    CAS  Google Scholar 

  • Pedrazzini E, Vitale A (1996) The binding protein (BiP) and the synthesis of secretory proteins. Plant Physiol Biochem 34:207–216

    CAS  Google Scholar 

  • Penttila ME (1998) Heterologous protein production in Trichoderma. In: Harman GE, Kubicek CP (eds) Trichoderma and gliocladium, vol 2. Taylor and Francis, London, pp 365–382

    Google Scholar 

  • Punt PJ, Zegers ND, Busscher M et al (1991) Intracellular and extracellular production of proteins under the control of expression signals of the highly expressed Aspergillus nidulans gpdA gene. J Biotechnol 17:19–34

    CAS  Google Scholar 

  • Punt PJ, Veldhuisen G, Van den Hondel CAMJJ (1994) Protein targeting and secretion in filamentous fungi. Antonie Van Leeuwenhoek 65:211–216

    CAS  Google Scholar 

  • Punt PJ, Van Gemeren IA, Drint-Kuijvenhoven J et al (1998) Analysis of the role of the gene bipA, encoding the major endoplasmic reticulum chaperone protein in the secretion of homologous and heterologous proteins in black Aspergilli. Appl Microbiol Biotechnol 50:447–454

    CAS  Google Scholar 

  • Punt PJ, Biezen NV, Conesa A et al (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206

    CAS  Google Scholar 

  • Radzio R, Kuck U (1997) Synthesis of biotechnologically relevant heterologous proteins in filamentous fungi. Process Biochem 32:529–537

    CAS  Google Scholar 

  • Roberts IN, Jeenes DJ, Mackenzie DA et al (1992) Heterologous gene expression in A. Niger: a glucoamylase–porcine pancreatic phospholipase A2 fusion protein is secreted and processed to yield mature enzyme. Gene 122:155–161

    CAS  Google Scholar 

  • Ruiz-Duenas FJ, Martinez MJ, Martinez AT (1999) Heterologous expression of Pleurotus eryngii peroxidase confirms its ability to oxidize Mn2+ and different aromatic substrates. Appl Environ Microbiol 65:4705–4707

    CAS  Google Scholar 

  • Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14:20–28

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual second edition. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Saunders G, Picknett TM, Tuite MF et al (1989) Heterologous gene expression in filamentous fungi. Trends Biotechnol 7:283–287

    CAS  Google Scholar 

  • Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372

    CAS  Google Scholar 

  • Schneider JC, Guarente L (1991) Vectors for expression of cloned genes in yeast: regulation, overproduction, and underproduction. Methods Enzymol 194:373–388

    CAS  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  Google Scholar 

  • Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891–894

    CAS  Google Scholar 

  • Smith TL, Gaskell J, Berka RM et al (1990) The promoter of the glucoamylase-encoding gene of Aspergillus niger functions in Ustilago maydis. Gene 88:259–262

    CAS  Google Scholar 

  • Stewart P, Whitwam RE, Kersten PJ et al (1996) Efficient expression of a Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae. Appl Environ Microbiol 62:860–864

    CAS  Google Scholar 

  • Stroh WH (1998) Industrial enzymes market. Genet Eng News 18:11–38

    Google Scholar 

  • Swift RJ, Wiebe MG, Robson GD et al (1998) Recombinant glucoamylase production by Aspergillus niger B1 in chemostat and pH auxostat cultures. Fungal Genet Biol 25:100–109

    CAS  Google Scholar 

  • Tada S, Gomi K, Kitamoto K et al (1991) Construction of a fusion gene comprising Taka-amylase A promoter and the Escherichia coli beta-glucuronidase gene and analysis of its expression in Aspergillus oryzae. Gen Genet 229:301–306

    CAS  Google Scholar 

  • Teo VSJ, Cziferszky AE, Bergquist PL, Nevalainen KMH (2000) Codon optimization of the thermophile xylanase gene xynB from Dictyoglomus thermophilum for expression in Trichoderma reesei. FEMS Microbiol Lett 190:13–19

    CAS  Google Scholar 

  • Thongchul N, Yang ST (2003) Controlling filamentous fungal morphology by immobilization on a rotating fibrous atrix to enhance oxygen transfer and l (+)-lactic acid production by Rhizopus oryzae. In: Saha BC (ed) Fermentation biotechnology. American Chemical Society, Washington, DC, pp 36–51

    Google Scholar 

  • Tsuchiya K, Tada S, Gomi K et al (1992) High level expression of the synthetic human lysozyme gene in Aspergillus oryzae. Appl Microbiol Biotechnol 38:109–114

    CAS  Google Scholar 

  • Tsukagoshi N, Kobayashi T, Kato M (2001) Regulation of the amylolytic and (hemi)cellulolytic genes in asperigilli. J Gen Appl Microbiol 47:1–19

    CAS  Google Scholar 

  • Valkonen M, Ward M, Wang H et al (2003) Improvement of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded protein response. Appl Environ Microb 69(12):6979–6986

    CAS  Google Scholar 

  • Van den Brink HJM, Petersen SG, Rahbek-Nielsen H et al (2006) Increased production of chymosin by glycosylation. J Biotechnol 125:304–310

    Google Scholar 

  • Van den Hombergh JPTW, Sollewijn Gelpke MD, Van de Vondervoort PJI et al (1997a) Disruption of three acid proteases in Aspergillus niger—effects on protease spectrum, intracellular proteolysis and degradation of target proteins. Eur J Biochem 247:605–613

    Google Scholar 

  • Van den Hombergh JPTW, Van de Vondervoort PJI, Tachet LF et al (1997b) Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol 15:256–263

    Google Scholar 

  • Van den Hondel CAMJJ, Punt PJ, Van Gorcom RFM (1991) Heterologous gene expression in filamentous fungi. In: Bennet JW, Lasure LL (eds) More gene manipulations in fungi. Academic Press, San Diego, pp 396–428

    Google Scholar 

  • Van den Hondel CAMJJ, Punt PJ, Gorcom RFMV (1992) Production of extracellular proteins by the filamentous fungus Aspergillus. Antonie Van Leeuwenhoek 61:153–160

    Google Scholar 

  • Van Gemeren IA, Punt PJ, Drint-Kuyvenhoven A et al (1997) The ER chaperone encoding bipA gene of black Aspergilli is induced by heat shock and unfolded proteins. Gene 198:43–52

    Google Scholar 

  • Verdoes JC, Punt PJ, Schrickx JM et al (1993) Glucoamylase overexpression in Aspergillus niger: molecular genetic analysis of strains containing multiple copies of the glaA gene. Transgenic Res 2:84–92

    CAS  Google Scholar 

  • Verdoes JC, Punt PJ, Burlingame R, Bartels J, Van Dijk R, Slump E, Meens M, Joosten R, Emalfarb M (2007) A dedicated vector for efficient library construction and high throughput screening in the hyphal fungus Chrysosporium lucknowense. Ind Biotechnol 3:48–57

    CAS  Google Scholar 

  • Walsh DJ, Gibbs MD, Bergquist PL (1998) Expression and secretion of bacterial thermophilic hemicellulases in Kluveromyces lactis. In: Eriksson K-E, Cavaco-Paulo A (eds) Enzyme applications in fiber processing. Am Chem Soc Symp 687:155–167

  • Wang H, Ward M (2000) Molecular characterization of a PDI-related gene prpA in Aspergillus niger var. awamori. Curr Genet 37:57–64

    CAS  Google Scholar 

  • Wang H, Entwistle J, Morlon E et al (2003) Isolation and characterisation of a calnexin homologue, clxA, from Aspergillus niger. Mol Genet Genomics 268:684–691

    CAS  Google Scholar 

  • Wang L, Ridgwaya D, Gu T et al (2005) Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnol Adv 23:115–129

    CAS  Google Scholar 

  • Wang Y, Xue W, Sims AH, Zhao C, Wang A, Tang G, Qin J, Wang H (2008) Isolation of four pepsin-like protease genes from Aspergillus niger and analysis of the effect of disruptions on heterologous laccase expression. Fungal Genet Biol 45:17–27

    Google Scholar 

  • Ward M (1989) Heterologous gene expression in Aspergillus. In: Nevalainen H, Pentilla M (eds) EMBO-ALKO workshop on molecular biology of filamentous fungi. Foundation for Biotechnical and Industrial Fermentation Research, Espoo, pp 119–128

    Google Scholar 

  • Ward M, Wilson LJ, Kodama KH et al (1990) Improved production of chymosin in Aspergillus expression as a glucoamylase-chymosin fusion. Biotechnology 8:435–440

    CAS  Google Scholar 

  • Ward PP, Lo JY, Duke M, May GS, Headon DR, Coneely O (1992) Production of biologically active recombinant human lactoferrin in Aspergillus oryzae. Biotechnology 10:784–789

    CAS  Google Scholar 

  • Ward PP, Piddington CS, Cunningham GA et al (1995) System for production of commercial quantities of human lactoferrin: a broad spectrum natural antibiotic. Biotechnology 13:498–503

    CAS  Google Scholar 

  • Ward OP, Qin WM, Hanjoon JD, Singh EJYA (2006) Physiology and biotechnology of Aspergillus. Adv Appl Microbiol 58:1–75

    CAS  Google Scholar 

  • Welihinda AA, Tirasophon W, Kaufman RJ (1999) The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expr 7:293–300

    CAS  Google Scholar 

  • Wiebe MG, Karandikar A et al (2001) Production of tissue plasminogen activator (t-PA) in Aspergillus niger. Biotechnol Bioeng 76:164–174

    CAS  Google Scholar 

  • Xu J, Wang L, Ridgway D et al (2000) Increased Heterologous Protein Production in Aspergillus niger, fermentation through extracellular proteases inhibition by pelleted growth. Biotechnol Prog 16:222–227

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenu Katoch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, R., Katoch, M., Srivastava, P.S. et al. Approaches for refining heterologous protein production in filamentous fungi. World J Microbiol Biotechnol 25, 2083–2094 (2009). https://doi.org/10.1007/s11274-009-0128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0128-x

Keywords

Navigation