Skip to main content

Advertisement

Log in

Bioactive metabolites from Alternaria brassicicola ML-P08, an endophytic fungus residing in Malus halliana

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A total of 48 strains were isolated from the normal tissues of Malus halliana and the EtOAc extracts of their cultures were subjected to primary antimicrobial screening against four test bacteria and three fungi. As a result, 22 strains exhibited antimicrobial activity against at least one test microbe. Among them, Alternaria brassicicola ML-P08 showing strong activity (MICs: 0.31–2.50 mg/ml) was selected for further investigation on its secondary metabolites. Bioassay-guided fractionation of the EtOAc extract of its liquid culture afforded seven compounds, which were identified as alternariol (1), alternariol 9-methyl ether (2), altechromone A (3), herbarin A (4), cerevisterol (5), 3β,5α-dihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (6) and 3β-hydroxy-(22E,24R)-ergosta-5,8,22-trien-7-one (7), respectively, by spectral means (MS, IR, 1H- and 13C-NMR). In vitro antimicrobial assay showed that compound 3 was substantially active against Bacillus subtilis, Escherichia coli, Pseudomonas fluorescens and Candida albicans with the MICs of 3.9, 3.9, 1.8, and 3.9 μg/ml, respectively. Compound 4 also showed pronounced antifungal activity against Trichophyton rubrum and C. albicans with MICs of both 15.6 μg/ml. In addition, compound 1 exhibited strong xanthine oxidase inhibitory activity with the IC50 of 15.5 μM, comparable to that of positive control, allopurinol (IC50: 10.7 μM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aksoy DY, Unal S (2008) New antimicrobial agents for the treatment of Gram-positive bacterial infections. Clin Microbiol Infect 14:411–420. doi:10.1111/j.1469-0691.2007.01933.x

    Article  CAS  Google Scholar 

  • Andersen B, Dongo A, Pryor BM (2008) Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila. Mycol Res 112:241–250. doi:10.1016/j.mycres.2007.09.004

    Article  CAS  Google Scholar 

  • Bruce SP (2006) Febuxostat: a selective xanthine oxidase inhibitor for the treatment of hyperuricemia and gout. Ann Pharmacother 40:2187–2194. doi:10.1345/aph.1H121

    Article  CAS  Google Scholar 

  • Gu W, Ge HM, Song YC, Ding H, Zhu HL, Zhao XA, Tan RX (2007) Cytotoxic benzo[j] fluoranthene metabolites from Hypoxylon truncatum IFB-18, an endophyte of Artemisia annua. J Nat Prod 70:114–117. doi:10.1021/np0604127

    Article  CAS  Google Scholar 

  • Ishizuka T, Yaoita Y, Kikuchi M (1997) Sterol constituents from the fruit bodies of Grifola frondosa (Fr.) S. F. Gray. Chem Pharm Bull (Tokyo) 45(175):6–1760

    Google Scholar 

  • Jadulco R, Brauers G, Edrada RA, Ebel R, Wray V, Sudarsono, Proksch P (2002) New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J Nat Prod 65:730–733. doi:10.1021/np010390i

    Article  CAS  Google Scholar 

  • Jiao RH, Ge HM, Shi DH, Tan RX (2006) An apigenin-derived xanthine oxidase inhibitor from Palhinhaea cernua. J Nat Prod 69:1089–1091. doi:10.1021/np060038a

    Article  CAS  Google Scholar 

  • Kimura Y, Mizuno T, Nakajima H, Hamasaki T (1992) Altechromones A and B, new plant growth regulators produced by the fungus, Alternaria sp. Biosci Biotechnol Biochem 56:1664–1665

    Article  CAS  Google Scholar 

  • Koch K, Podlech J, Pfeiffer E, Metzler M (2005) Total synthesis of alternariol. J Org Chem 70:3275–3276. doi:10.1021/jo050075r

    Article  CAS  Google Scholar 

  • Kong LD, Cai Y, Huang WW, Cheng CHK, Tan RX (2000) Inhibition of xanthine oxidase by some Chinese medicinal plants used to treat gout. J Ethnopharmacol 73:199–207. doi:10.1016/S0378-8741(00)00305-6

    Article  CAS  Google Scholar 

  • Matsumoto M, Matsutani S, Sugita K, Yoshida H, Hayashi F, Terui Y, Nakai H, Uotani N (1992) Depudecin: a novel compound inducing the flat phenotype of NIH3T3 cells doubly transformed by ras- and src-oncogene, produced by Alternaria brassicicola. J Antibiot 45:879–885

    CAS  Google Scholar 

  • McGlacken GP, Fairlamb IJS (2005) 2-Pyrone natural products and mimetics: isolation, characterization and biological activity. Nat Prod Rep 22:369–385. doi:10.1039/b416651p

    Article  CAS  Google Scholar 

  • Mosaddik MA, Banbury L, Forster P, Booth R, Markham J, Leach D, Waterman PG (2004) Screening of some Australian Falcourtiaceae species for in vitro antioxidant, cytotoxic and antimicrobial activity. Phytomedicine 11:461–466. doi:10.1016/j.phymed.2003.12.001

    Article  CAS  Google Scholar 

  • Nguyen MTT, Awale S, Tezuka Y, Ueda J, Tran QL, Kadota S (2006) Xanthine oxidase inhibitors from the flowers of Chrysanthemum sinense. Planta Med 72:46–51. doi:10.1055/s-2005-873181

    Article  CAS  Google Scholar 

  • Patriarca A, Azcarate MP, Terminiello L, Pinto VF (2007) Mycotoxin production by Alternaria strains isolated from Argentinean wheat. Int J Food Microbiol 119:219–222. doi:10.1016/j.ijfoodmicro.2007.07.055

    Article  CAS  Google Scholar 

  • Piccialli V, Sica D (1987) Four new trihydroxylated sterols from the sponge Spongionella gracilis. J Nat Prod 50:915–920. doi:10.1021/np50053a024

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Roemmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004. doi:10.1017/S0953756202006342

    Article  CAS  Google Scholar 

  • Stinson EE, Bills DD, Osman SF (1980) Mycotoxin production by Alternaria species grown on apples, tomatoes and blueberries. J Agric Food Chem 28:960–963. doi:10.1021/jf60231a040

    Article  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites (1987 to 2000). Nat Prod Rep 18:448–459. doi:10.1039/b100918o

    Article  CAS  Google Scholar 

  • Tan N, Tao YW, Pan JH, Wang SY, Xu F, She ZG, Lin YC, Jones EBG (2008) Isolation, structure elucidation, and mutagenicity of four alternariol derivatives produced by the mangrove endophytic fungus No. 2240. Chem Nat Compd 44:296–300. doi:10.1007/s10600-008-9046-7

    Article  CAS  Google Scholar 

  • Wang FW, Jiao RH, Cheng AB, Tan SH, Song YC (2007) Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J Microbiol Biotechnol 23:79–83. doi:10.1007/s11274-006-9195-4

    Article  CAS  Google Scholar 

  • Wang FW, Hou ZM, Wang CR, Li P, Shi DH (2008) Bioactive metaboites from Penicillium sp., an endophytic fungus residing in Hopea hainanensis. World J Microbiol Biotechnol 24:2143–2147. doi:10.1007/s11274-008-9720-8

    Article  CAS  Google Scholar 

  • Wei JC (1979) Handbook of identification of fungi. Shanghai Science & Technology Press, Shanghai

    Google Scholar 

  • Zinner SH (2005) The search for new antimicrobials: why we need new options. Expert Rev Anti Infect Ther 3:907–913. doi:10.1586/14787210.3.6.907

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, W. Bioactive metabolites from Alternaria brassicicola ML-P08, an endophytic fungus residing in Malus halliana . World J Microbiol Biotechnol 25, 1677–1683 (2009). https://doi.org/10.1007/s11274-009-0062-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0062-y

Keywords

Navigation