Skip to main content
Log in

Autochthonous bioaugmentation and its possible application to oil spills

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bioaugmentation for oil spills is a much more promising technique than is biostimulation. However, the effectiveness of bioaugmentation is variable, because the survival and the xenobiotic-degrading ability of introduced microorganisms are highly dependent on environmental conditions. As an alternative, autochthonous bioaugmentation (ABA) is proposed to overcome these difficulties. The ABA method is like a ready-made bioaugmentation technology. In ABA, microorganisms indigenous to the contaminated site or predicted contamination site that are well-characterized and potentially capable of degrading oils are used, and these microorganisms should be enriched under conditions where bioaugmentation will be conducted. It is possible to obtain information in advance on the chemical and physical characteristics of potential oil spill sites and of oils that might be spilled. The application of ABA in the coastal areas of Hokkaido Prefecture, Japan, is considered here, because Hokkaido is located south of Sakhalin Island, Russia, where development of oil fields is in progress. If oil spills in this region were well characterized in advance, ABA could be a feasible technology in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aota M (2002) Sea ice and global environment (original title is in Japanese). In: Murakami T (ed) Sakhalin offshore oil and gas development and environment protection. Hokkaido University Press, Sapporo, pp 141–160 (in Japanese)

    Google Scholar 

  • Atagana HI (2004) Biodegradation of phenol, o-cresol, m-cresol and p-cresol by indigenous soil fungi in soil contaminated with cresote. World J Microbiol Biotechnol 20:851–858. doi:10.1007/s11274-004-9010-z

    Article  CAS  Google Scholar 

  • Bathe S, Schwarzenbeck N, Hauser M (2005) Plasmid-mediated bioaugmentation of activated sludge bacteria in a sequencing batch moving bed reactor using pNB2. Lett Appl Microbiol 41:242–247. doi:10.1111/j.1472-765X.2005.01754.x

    Article  CAS  Google Scholar 

  • Belloso CO (2003a) In situ bioremediation of hydrocarbon-contaminated soil by autochthonous microorganisms: a full-scale project. In: Magar VS, Kelley ME (eds) Proceedings of the seventh international in situ and on-site bioremediation symposium 2003, Baltelle Press, Columbus, paper O-08

  • Belloso CO (2003b) Performance improvement of an urban wastewater stabilization ponds system by bioaugmented autochthonous bacteria: a case study. In: Magar VS, Kelley ME, (eds) Proceedings of the seventh international in situ and on-site bioremediation symposium 2003, Baltelle Press, Colombus, paper N-03

  • Blumenroth P, Wagner-Döbler I (1998) Survival of inoculant in polluted sediments: effect of strain origin and carbon source competition. Microb Ecol 35:279–288. doi:10.1007/s002489900083

    Article  CAS  Google Scholar 

  • Bouchez T, Patureau D, Dabert P, Juretschko S, Dore J, Delgenes P, Moletta R, Wagner M (2000) Ecological study of a bioaugmentation failure. Environ Microbiol 2:179–190. doi:10.1046/j.1462-2920.2000.00091.x

    Article  CAS  Google Scholar 

  • Cases I, de Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222

    CAS  Google Scholar 

  • D’Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 72:28–36. doi:10.1128/AEM.72.1.28-36.2006

    Article  Google Scholar 

  • Dott W, Feuduejer D, Kampfer, Scgkeubunger H, Strechel (1989) Comparison of autochthonous bacteria to their effectiveness in fuel oil degradation. J Ind Microbiol 4:365–374. doi:10.1007/BF01569538

    Article  Google Scholar 

  • Fantroussi SE, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275. doi:10.1016/j.mib.2005.04.011

    Article  Google Scholar 

  • Garon D, Sage L, Seigle-Murandi F (2004) Effects of fungal bioaugmentation and cyclodextrin amendment on fluorine degradation in soil slurry. Biodegradation 15:1–8. doi:10.1023/B:BIOD.0000009934.87627.91

    Article  CAS  Google Scholar 

  • Gentry TJ, Josephson KL, Pepper IL (2004a) Functional establishment of introduced chlorobenzoate degraders following bioaugmentation with newly activated soil. Biodegradation 15:67–75. doi:10.1023/B:BIOD.0000009974.13147.82

    Article  CAS  Google Scholar 

  • Gentry TJ, Rensing C, Pepper IL (2004b) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494. doi:10.1080/10643380490452362

    Article  CAS  Google Scholar 

  • Grosser RJ, Warshawsky D, Vestal JR (1991) Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils. Appl Environ Microbiol 57:3462–3469

    CAS  Google Scholar 

  • Gurijala KR, Alexander M (1990) Explanation for the decline of bacteria introduced into lake water. Microb Ecol 20:231–244. doi:10.1007/BF02543879

    Article  Google Scholar 

  • Hara A, Syutsubo K, Harayama S (2003) Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5:746–753. doi:10.1046/j.1468-2920.2003.00468.x

    Article  CAS  Google Scholar 

  • Hosokawa R, Nagai M, Kondo H, Teragaki J, Okuyama H (2009) Application of autochthonous bioaugmentation in cold regions of Japan. In: Columbus F (ed) Contaminated soils: environmental impact, disposal and treatment. Nova Science Publishers, Inc., Hauppauge, New York (in press). ISBN:978-1-60741-791-0

  • Kasai Y, Kishira H, Sasaki T, Syotsubo K, Watanabe K, Harayama S (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4:141–147. doi:10.1046/j.1462-2920.2002.00275.x

    Article  CAS  Google Scholar 

  • Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethane. Environ Sci Technol 36:5106–5116. doi:10.1021/es0255711

    Article  CAS  Google Scholar 

  • McKew BA, Coulon F, Yakimov MM, Denaro R, Genovese M, Smith CJ, Osbom AM, Timmis KN, McGenity TJ (2007) Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environ Microbiol 9:1562–1571

    Article  CAS  Google Scholar 

  • Møller J, Gaarn H, Steckel T, Wedebye B, Westermann P (1995) Inhibitory effects on degradation of diesel oil in soil-microcosms by a commerecial bioaugmentation product. Bull Environ Contam Toxicol 54:913–918. doi:10.1007/BF00197978

    Article  Google Scholar 

  • Murakami T (2002) Sakhalin offshore oil and gas development (original title is in Japanese). In: Murakami T (ed) Sakhalin offshore oil and gas development and environmental protection, Hokkaido University Press, Sapporo, pp 3–40 (in Japanese)

  • Nagai M (2009) Study on autochthonous bioaugmentation tests predicting the contamination of Hokkaido coasts by crude oil (in Japanese with English Abstract). Master’s thesis, Graduate School of Environmental Science, Hokkaido University, Japan

  • Nancharaiah YV, Joshi HM, Hausner M, Venugopalam VP (2008) Bioaugmentation of aerobic microbial granules with Pseudomonas putida carrying TOL plasmid. Chemosphere 71:30–35. doi:10.1016/j.chemosphere.2007.10.062

    Article  CAS  Google Scholar 

  • Oshima KI, Wakatsuchi M, Fukamachi Y, Mizuta G (2002) Near-surface circulation and tidal currents of the Okhotsk Sea observed with satellite-tracked drifters. J Geophys Res 107(C11):3195. doi:10.1029/2001JC001005

    Article  Google Scholar 

  • Otte MP, Gagnon J, Comeau Y, Matte N, Greer CW, Samson R (1994) Activation of an indigenous microbial consortium for bioaugmentation of pentachlorophenol/creosote contaminated soils. Appl Microbiol Biotechnol 40:926–932. doi:10.1007/BF00174001

    Article  CAS  Google Scholar 

  • Potin O, Rafin C, Veignie E (2004) Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int Biodeterior Biodegradation 50:45–52. doi:10.1016/j.ibiod.2004.01.003

    Article  Google Scholar 

  • Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90:159–168. doi:10.1016/S0960-8524(03)00114-7

    Article  CAS  Google Scholar 

  • Saeki H, Otsuka N (2002) Assumption of the trace of drifting spilled oil and the method for its recovery (original title is in Japanese). In: Murakami T (ed) Sakhalin offshore oil and gas development and environment protection. Hokkaido University Press, Sapporo, pp 189–204 (in Japanese)

    Google Scholar 

  • Sayler GS, Ripp S (2000) Field application of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289. doi:10.1016/S0958-1669(00)00097-5

    Article  CAS  Google Scholar 

  • Schneiker S, Martins dos Santos VA, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesman A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Pühler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorhölter FJ, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004. doi:10.1038/nbt1232

    Article  CAS  Google Scholar 

  • Takeuchi M, Nanba K, Iwamoto H, Nirei H, Kusuda T, Kazaoka O, Owaki M, Furuya K (2005) In situ bioremediation of a cis-dichloroethylene-contaminated aquifer utilizing methane-rich groundwater from an uncontaminated aquifer. Water Res 39:2438–2444. doi:10.1016/j.watres.2005.04.041

    Article  CAS  Google Scholar 

  • Thompson IP, van der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7:909–915. doi:10.1111/j.1462-2920.2005.00804.x

    Article  CAS  Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  Google Scholar 

  • Tsutsumi H, Kono M, Takai K, Manabe T, Haraguchi M, Yamamoto I, Oppenheimer C (2000) Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan III. Field test of a bioremediation agent with microbiological cultures for the treatment of an oil spill. Mar Pollut Bull 40:320–324. doi:10.1016/S0025-326X(99)00220-9

    Article  CAS  Google Scholar 

  • Ueno A, Hasanuzzaman M, Yumoto I, Okuyama H (2006a) Verification of degradation of diesel oil by Pseudomonas aeruginosa strain WatG in soil microcosms. Curr Microbiol 52:182–185. doi:10.1007/s00284-005-0133-8

    Article  CAS  Google Scholar 

  • Ueno A, Ito Y, Yamamoto Y, Yumoto I, Okuyama H (2006b) Bacterial community changes in diesel-oil-contaminated soil microcosms biostimulated with Luria-Bertani medium or bioaugmented with a petroleum-degrading bacterium, Pseudomonas aeruginosa strain WatG. J Basic Microbiol 46:310–317. doi:10.1002/jobm.200510116

    Article  CAS  Google Scholar 

  • Ueno A, Ito Y, Yumoto I, Okuyama H (2007) Isoltion and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation. World J Microbiol Biotechnol 23:1739–1745. doi:10.1007/s11274-007-9423-6

    Article  CAS  Google Scholar 

  • Uto S, Tamura K, Shinoda H (1995) On the measurement of Okhotsk sea ice by patrol ship Soya. In: Proceedings of NIPR symposium on polar meteorology and glaciology 9, National Institute of Polar research, Tokyo, p 200

  • van Beilen JB, Panke S, Lucchini S, Franchini AG, Rothlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630

    Google Scholar 

  • van Beilen JB, Marin MM, Smits TH, Röthlisberger M, Franchini AG, Witholt B, Rojo F (2004) Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ Microbiol 6:264–273. doi:10.1111/j.1462-2920.2004.00567.x

    Article  Google Scholar 

  • van Homme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549. doi:10.1128/MMBR.67.4.503-549.2003

    Article  Google Scholar 

  • van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 67:121–135

    Google Scholar 

  • Vecchioli GI, DelPanno MT, Painceira MT (1990) Use of selected autochthonous soil bacteria to enhance degradation of hydrocarbons in soil. Environ Pollut 67:249–258. doi:10.1016/0269-7491(90)90190-N

    Article  CAS  Google Scholar 

  • Vogel TM (1996) Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7:311–316. doi:10.1016/S0958-1669(96)80036-X

    Article  CAS  Google Scholar 

  • Vogel TM, Walter MV (2001) Bioaugmentation. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL (eds) Manual of environmental microbiology. American Society for Microbiology Press, Washington DC, pp 952–959

    Google Scholar 

  • Watanabe K, Teramoto M, Harayama S (2002) Stable augmentation of activated sludge with foreign catabolic genes harboured by an indigenous dominant bacterium. Environ Microbiol 4:577–583. doi:10.1046/j.1462-2920.2002.00342.x

    Article  CAS  Google Scholar 

  • Weber WJ Jr, Corseuil HX (1994) Inoculation of contaminated subsurface soils with enriched indigenous microbes to enhance bioremediation rates. Water Res 28:1407–1414. doi:10.1016/0043-1354(94)90308-5

    Article  CAS  Google Scholar 

  • Wongsa P, Tanaka M, Ueno A, Hasanuzzaman M, Yumoto I, Okuyama H (2004) Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil and lubricating oil. Curr Microbiol 49:415–422. doi:10.1007/s00284-004-4347-y

    Article  CAS  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lunsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen nov., sp. nov., a new hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348

    CAS  Google Scholar 

Download references

Acknowledgments

Akio Ueno greatly contributed in the work on bioremediation conducted in our laboratory and provided critical feedback on this manuscript. The contribution by Jun Teragaki and Hanae Kondo is also appreciated. The authors also thank Dr. Y. Masuda of Shari Town Office, Hokkaido Prefecture, for his cooperation in sampling at Shiretoko and Ms. A. Kubo for her assistance in preparing the figure. This work was partly supported by Grant-in-Aid for Scientific Research ((C) no. 17510061) from the Ministry of Education, Science, Sports, and Culture of Japan and grants from Northern Advancement Center for Science & Technology, the Sumitomo Foundation and Institute for Fermentation, Osaka (IFO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Okuyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosokawa, R., Nagai, M., Morikawa, M. et al. Autochthonous bioaugmentation and its possible application to oil spills. World J Microbiol Biotechnol 25, 1519–1528 (2009). https://doi.org/10.1007/s11274-009-0044-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0044-0

Keywords

Navigation