Skip to main content

Advertisement

Log in

Drivers of plant species composition of ecotonal vegetation in two fishpond management types

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Plants play an important role in fishpond littorals, but little is known about factors influencing their presence and growth patterns. We surveyed vegetation of reed bed and exposed bottom zones in ponds used for rearing of common carp fry (nursery pond) and ongrowing to market size (main pond). Plant species diversity and functional diversity and plant species cover and functional cover were assessed. We found no significant differences in spring and summer surveys. When data of the analysed vegetation zones were combined, nursery and main ponds showed significant differences in plant species diversity and species cover. Analysis of the vegetation zones revealed that (i) regardless of fishpond management type, exposed bottoms and reed beds significantly differed in plant species cover and functional cover; (ii) plant species diversity and species cover of exposed bottom zones differed between nursery and main ponds; and (iii) no assessed characteristics differed significantly between nursery pond reed bed and main pond reed bed zones. Zone width and shoreline slope exerted greatest impact on development of reed beds, whereas fishpond management type and surrounding land use were the most important factors determining vegetation of exposed bottoms. Partial summer drainage supported plant species diversity and functional diversity as well as cover of typical species of reed beds and exposed bottoms in both fishpond types. Our results are applicable to preservation of fishpond biodiversity as well as to the management and conservation of other shallow water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akasaka M, Takamura N, Mitsuhashi H, Kadono Y (2010) Effects of land use on aquatic macrophyte diversity and water quality of ponds. Freshw Biol 55:909–922

    Article  CAS  Google Scholar 

  • Akasaka M, Higuchi S, Takamura N (2018) Landscape-and local-scale actions are essential to conserve regional macrophyte biodiversity. Front Plant Sci 9:599

    Article  PubMed  PubMed Central  Google Scholar 

  • Alahuhta J, Kanninen A, Vuori KM (2012) Response of macrophyte communities and status metrics to natural gradients and land use in boreal lakes. Aquat Bot 103:106–114

    Article  Google Scholar 

  • Alahuhta J, Rosbakh S, Chepinoga V, Heino J (2020) Environmental determinants of lake macrophyte communities in Baikal Siberia. Aquat Sci 82:1–13

    Article  Google Scholar 

  • Angiolini C, Viciani D, Bonari G, Zoccola A, Bottacci A, Ciampelli P, Gonnelli V, Lastrucci L (2019) Environmental drivers of plant assemblages: are there differences between palustrine and lacustrine wetlands? A case study from the northern Apennines (Italy). Knowl Manag Aquat Ecosyst 420:34

    Article  Google Scholar 

  • Aubin J, Robin J, Wezel A, Thomas M (2017) Agroecological management in fish pond systems. In: Wezel A (ed) Agroecological practices for sustainable agriculture: principles, applications, and making the transition. World Scientific, New Yersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennay and Tokyo, pp 355–394

    Chapter  Google Scholar 

  • Bogusch P et al (2016) Industrial and post-industrial habitats serve as critical refugia for pioneer species of newly identified arthropod assemblages associated with reed galls. Biodivers Conserv 25:827–863

    Article  Google Scholar 

  • Bornette G, Amoros C (1996) Disturbance regimes and vegetation dynamics: role of floods in riverine wetlands. J Veg Sci 7:615–622

    Article  Google Scholar 

  • Broyer J, Curtet L (2012) Biodiversity and fish farming intensification in French fishpond systems. Hydrobiologia 694:205–218

    Article  Google Scholar 

  • Carmignani JR, Roy AH (2017) Ecological impacts of winter water level drawdowns on lake littoral zones: a review. Aquat Sci 79:803–824

    Article  Google Scholar 

  • Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370

    Article  Google Scholar 

  • Cook CDK (1990) Aquatic plant book. SPB Academic, Hague

    Google Scholar 

  • CORINE (2016) Corine Land Cover (CLC) 2012, Version 18.5.1. European Environment Agency, Copernicus Programme. https://land.copernicus.eu/paneuropean/corine-land-cover

  • Danihelka J, Chrtek JJ, Kaplan Z (2012) Checklist of vascular plants of the Czech Republic. Preslia 84:647–811

    Google Scholar 

  • Denny P (1987) Mineral cycling by wetland plants – A review. Archiv für Hydrobiologie – Beiheft Ergebnisse der Limnologie 27:1–25

  • DIBAVOD (2017) Digital Base of Water Management Data (DIBAVOD). T. G. Masaryk Water Research Institute. http://www.dibavod.cz/

  • Engloner AI (2009) Structure, growth dynamics and biomass of reed (Phragmites australis)—a review. Flora 204:331–346

    Article  Google Scholar 

  • ESRI (2017) ArcGIS Desktop, Release 10.5. edn. Environmental Systems Research Institute, Redlands, CA

  • Fernández-Aláez C, Fernández-Aláez M, Bécares E (1999) Influence of water level fluctuation on the structure and composition of the macrophyte vegetation in two small temporary lakes in the northwest of Spain. Biology. Ecology and Management of Aquatic Plants. Springer, Berlin, pp 155–162

    Google Scholar 

  • Francová K, Šumberová K, Janauer GA, Adámek Z (2019a) Effects of fish farming on macrophytes in temperate carp ponds. Aquacult Int 27:413–436

    Article  Google Scholar 

  • Francová K, Šumberová K, Kučerová A, Čtvrtlíková M, Šorf M, Borovec J, Drozd B, Janauer GA, Vrba J (2019b) Macrophyte assemblages in fishponds under different fish farming management. Aquat Bot 159:103131

    Article  Google Scholar 

  • Gaucherand S, Schwoertzig E, Clement J-C, Johnson B, Quétier F (2015) The cultural dimensions of freshwater wetland assessments: lessons learned from the application of US rapid assessment methods in France. Environ Manage 56:245–259

    Article  PubMed  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Grulich V (2012) Red List of vascular plants of the Czech Republic:3rd edition. Preslia 84:631–645

    Google Scholar 

  • Grzywna H, Dąbek PB, Olszewska B (2018) Spatial and temporal variability of moisture condition in soil-plant environment using spectral data and GIS tools. Journal of Ecological Engineering 19:56–64

    Article  Google Scholar 

  • Hájková P, Horsák M, Hájek M, Jankovská V, Jamrichová E, Moutelíková J (2015) Using multi-proxy palaeoecology to test a relict status of refugial populations of calcareous-fen species in the Western Carpathians. The Holocene 25:702–715

    Article  Google Scholar 

  • Hejný S (1960) Ökologische Charakteristik der Wasser und Sumpfpflanzen in den Slowakischen Tiefebenen. Verlag der Slowakischen Akademie der Wissenschaften, Bratislava

    Google Scholar 

  • Hejný S (1971) The dynamic characteristics of littoral vegetation with respect to changes of water level. Hydrobiologia 12:71–85

    Google Scholar 

  • Hejný S (1978) Management aspects of fishpond drainage. In: Dykyjová D, Květ J (eds) Pond littoral ecosystems: structure and functioning: methods and results of quantitative ecosystem research in the Czechoslovakian IBP wetland project. Springer-Verlag, Berlin, Heidelberg, New York, pp 397–403

    Google Scholar 

  • Hejný S, Husák Š (1978) Higher plant communities. In: Dykyjová D, Květ J (eds) Pond Littoral Ecosystems: Structure and Functioning: Methods and Results of Quantitative Ecosystem Research in the Czechoslovakian IBP Wetland Project. Springer-Verlag, Berlin, Heidelberg, New York, pp 23–64

    Google Scholar 

  • Hejný S, Hroudová Z, Květ J (2002) Fishpond vegetation: An historical view. In: Květ J, Jeník J, Soukupová L (eds) Freshwater Wetlands and Their Sustainable Future: A Case Study of the Třeboň Basin Biosphere Reserve, Czech Republic. Unesco, Paris, pp 63–96

    Google Scholar 

  • Hoffmann RC (1996) Economic development and aquatic ecosystems in medieval Europe. Am Hist Rev 101:631–669

    Article  Google Scholar 

  • Holdredge C, Bertness MD (2011) Litter legacy increases the competitive advantage of invasive Phragmites australis in New England wetlands. Biol Invasions 13:423–433

    Article  Google Scholar 

  • Hrivnák R, Oťaheľová H, Kochjarová J, Paľove-Balang P (2013) Effect of environmental conditions on species composition of macrophytes-study from two distinct biogeographical regions of Central Europe. Knowl Manag Aquat Ecosyst 411:09

    Article  Google Scholar 

  • Husák Š (1978) Control of reed and reed mace stands by cutting. In: Dykyjová D, Květ J (eds) Pond Littoral Ecosystems: Structure and Functioning: Methods and Results of Quantitative Ecosystem Research in the Czechoslovakian IBP Wetland Project. Springer-Verlag, Berlin, Heidelberg, New York, pp 404–408

    Google Scholar 

  • Kaplan Z et al (2015) Distributions of vascular plants in the Czech Republic. Part 1. Preslia 87:417–500

    Google Scholar 

  • Kaplan Z et al (2016) Distributions of vascular plants in the Czech Republic. Part 2. Preslia 88:229–322

    Google Scholar 

  • Kaplan Z et al (2018) Distributions of vascular plants in the Czech Republic. Part 7. Preslia 90:425–531

    Article  Google Scholar 

  • Keddy P, Fraser LH (2000) Four general principles for the management and conservation of wetlands in large lakes: the role of water levels, nutrients, competitive hierarchies and centrifugal organization. Lakes Reserv 5:177–185

    Article  Google Scholar 

  • Krolová M, Čížková H, Hejzlar J, Poláková S (2013) Response of littoral macrophytes to water level fluctuations in a storage reservoir. Knowl Manag Aquat Ecosyst 408:07

    Article  Google Scholar 

  • Kučera J, Váňa J (2003) Check- and Red List of the bryophytes of the Czech Republic. Preslia 75:193–222

    Google Scholar 

  • Lemmens P, Mergeay J, De Bie T, Van Wichelen J, De Meester L, Declerck SA (2013) How to maximally support local and regional biodiversity in applied conservation? Insights from pond management. PLoS ONE 8:e72538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenssen JPM, Menting FBJ, Van der Putten WH, Blom CWPM (2000) Variation in species composition and species richness within Phragmites australis dominated riparian zones. Plant Ecol 147:137–146

    Article  Google Scholar 

  • Lewis-Phillips J, Brooks S, Sayer CD, McCrea R, Siriwardena G, Axmacher JC (2019) Pond management enhances the local abundance and species richness of farmland bird communities. Agric Ecosyst Environ 273:130–140

    Article  Google Scholar 

  • Lhotský R (2010) The role of historical fishpond systems during recent flood events. J Water Land Dev 14:49–65

    Article  Google Scholar 

  • Lukács BA, Tóthmérész B, Borics G, Várbíró G, Juhász P, Kiss B, Müller Z, László G, Erős T (2015) Macrophyte diversity of lakes in the Pannon Ecoregion (Hungary). Limnologica 53:74–83

    Article  Google Scholar 

  • Luken JO, Thieret JW (2001) Floristic relationships of mud flats and shorelines at Cave Run Lake, Kentucky. Castanea 66:336–351

    Google Scholar 

  • MacDonald MA, Cavers PB (1991) The biology of Canadian weeds.: 97. Barbarea vulgaris R. Br Can J Plant Sci 71:149–166

    Article  Google Scholar 

  • Mętrak M, Pawlikowski P, Suska-Malawska M (2014) Age and land use as factors differentiating hydrochemistry and plant cover of astatic ponds in post-agricultural landscape. J Water Land Dev 21:29–37

    Article  Google Scholar 

  • Mikulyuk A, Sharma S, Van Egeren S, Erdmann E, Nault ME, Hauxwell J (2011) The relative role of environmental, spatial, and land-use patterns in explaining aquatic macrophyte community composition. Can J Fish Aquat Sci 68:1778–1789

    Article  Google Scholar 

  • Milberg P Seed bank and seedlings emerging after soil disturbance in a wet semi-natural grassland in Sweden. In: Annales Botanici Fennici, 1993. JSTOR, pp 9–13

  • Oksanen J et al. (2019) Vegan: community ecology package. R package version 2.5–5 https://CRAN.R-project.org/package=vegan

  • Palmik K, Mäemets H, Haldna M, Kangur K (2013) A comparative study of macrophyte species richness in differently managed shore stretches of Lake Peipsi. Limnologica 43:245–253

    Article  Google Scholar 

  • Pokorný J, Květ J (2004) Aquatic plants and lake ecosystems. In: Oullivan PE, Reynolds CS (eds) The lakes handbook Limnology and limnetic ecology, vol 1. Blackwell Sci. and Blackwell Publ, Malden, Oxford, Carlton, pp 309–340

    Google Scholar 

  • Popp J, Békefi E, Duleba S, Oláh J (2019) Multifunctionality of pond fish farms in the opinion of the farm managers: the case of Hungary. Rev Aquacult 11:830–847

    Article  Google Scholar 

  • Poschlod P (1996) Population biology and dynamics of a rare short-lived pond mud plant, Carex bohemica Schreber. Verhandlungen-Gesellschaft für Ökologie 25:321–338

    Google Scholar 

  • Potop V, Türkott L, Kožnarová V, Možný M (2010) Drought episodes in the Czech Republic and their potential effects in agriculture. Theor Appl Climatol 99:373–388

    Article  Google Scholar 

  • Potužák J, Duras J, Drozd B (2016) Mass balance of fishponds: are they sources or sinks of phosphorus? Aquacult Int 24:1725–1745

    Article  Google Scholar 

  • Poulin B, Lefebvre G (2002) Effect of winter cutting on the passerine breeding assemblage in French Mediterranean reedbeds. Biodivers Conserv 11:1567–1581

    Article  Google Scholar 

  • Prach J, Kopecký M (2018) Landscape-scale vegetation homogenization in Central European sub-montane forests over the past 50 years. Appl Veg Sci 21:373–384

    Article  Google Scholar 

  • Pyšek P, Danihelka J, Sádlo J, Chrtek J Jr, Chytrý M, Jarošík V, Kaplan Z, Krahulec F, Moravcová L, Pergl J, Štajerová K, Tichý L (2012) Catalogue of alien plants of the Czech Republic: Checklist update, taxonomic diversity and invasion patterns. Preslia 84:155–255

    Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2012. https://www.r-project.org/

  • Rejmánková E (2011) The role of macrophytes in wetland ecosystems. J Ecol Environ 34:333–345

    Article  Google Scholar 

  • Richert E, Achtziger R, Dajdok Z, Gunther A, Heilmeier H, Hubner A, John H, Šumberová K (2016) Rare wetland grass (Coleanthus subtilis) in Central and Western Europe-current distribution, habitat types, and threats. Acta Soc Bot Pol 85:1–16

    Article  Google Scholar 

  • Rolls RJ, Heino J, Ryder DS, Chessman BC, Growns IO, Thompson RM, Gido KB (2018) Scaling biodiversity responses to hydrological regimes. Biol Rev 93:971–995

    Article  PubMed  Google Scholar 

  • Sayer C, Andrews K, Shilland E, Edmonds N, Edmonds-Brown R, Patmore I, Emson D, Axmacher J (2012) The role of pond management for biodiversity conservation in an agricultural landscape. Aquat Conserv 22:626–638

    Article  Google Scholar 

  • Scott DM, Joyce CB, Burnside NG (2008) The influence of habitat and landscape on small mammals in Estonian coastal wetlands. Estonian J Ecol 57:279–295

    Article  Google Scholar 

  • Sun J, Hunter PD, Tyler AN, Willby NJ (2018) The influence of hydrological and land use indicators on macrophyte richness in lakes: a comparison of catchment and landscape buffers across multiple scales. Ecol Ind 89:227–239

    Article  Google Scholar 

  • Svidenský R, Čížková H, Kučerová A (2014) Decline of the littoral vegetation on the Bažina Pond (Vrbenské rybníky NR). Sborník Jihočeského Muzea v Českých Budějovicích, Přírodní Vědy 54:86–100

    Google Scholar 

  • Svitok M, Hrivnák R, Kochjarová J, Oťaheľová H, Paľove-Balang P (2016) Environmental thresholds and predictors of macrophyte species richness in aquatic habitats in central Europe. Folia Geobotanica 51:227–238

    Article  Google Scholar 

  • Šumberová K, Horáková V, Lososová Z (2005) Vegetation dynamics on exposed pond bottoms in the Ceskobudejovicka basin (Czech Republic). Phytocoenologia 35:421–448

    Article  Google Scholar 

  • Šumberová K, Lososová Z, Fabšicová M, Horáková V (2006) Variability of vegetation of exposed pond bottoms in relation to management and environmental factors. Preslia 78:235–252

    Google Scholar 

  • Šumberová K, Ducháček M, Lososová Z (2012a) Life-history traits controlling the survival of Tillaea aquatica: a threatened wetland plant species in intensively managed fishpond landscapes of the Czech Republic. Hydrobiologia 689:91–110

    Article  Google Scholar 

  • Šumberová K, Lososová Z, Ducháček M, Horaková V, Fabšičová M (2012b) Distribution, habitat ecology, soil seed bank and seed dispersal of threatened Lindernia procumbens and alien Lindernia dubia (Antirrhinaceae) in the Czech Republic. Phyton 52:39–72

    Google Scholar 

  • Ter Braak CJ, Šmilauer P (2012) Canoco reference manual and user's guide: software for ordination, version 5.0. Microcomputer power, Ithaca

  • Valkama E, Lyytinen S, Koricheva J (2008) The impact of reed management on wildlife: a meta-analytical review of European studies. Biol Conserv 141:364–374

    Article  Google Scholar 

  • van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39:97–114

    Article  Google Scholar 

  • van Leeuwen CH, Sarneel JM, van Paassen J, Rip WJ, Bakker ES (2014) Hydrology, shore morphology and species traits affect seed dispersal, germination and community assembly in shoreline plant communities. J Ecol 102:998–1007

    Article  Google Scholar 

  • Waldon B (2012) The conservation of small water reservoirs in the Krajeńskie Lakeland (North-West Poland). Limnologica 42:320–327

    Article  Google Scholar 

  • Wantzen KM, Junk WJ, Rothhaupt K-O (2008) An extension of the floodpulse concept (FPC) for lakes. Ecological effects of water-level fluctuations in lakes. Springer, Dordrecht, pp 151–170

    Chapter  Google Scholar 

  • Wezel A, Oertli B, Rosset V, Arthaud F, Leroy B, Smith R, Angélibert S, Bornette G, Vallod D, Robin J (2014) Biodiversity patterns of nutrient-rich fish ponds and implications for conservation. Limnology 15:213–223

    Article  Google Scholar 

  • Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2004) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115:329–341

    Article  Google Scholar 

  • Yoon S, Kim G, Choi H, Byun C, Lee D (2019) Trait-based evaluation of plant assemblages in traditional farm ponds in Korea: Ecological and management implications. J Limnol 78:92–106

    Article  Google Scholar 

  • Young L (1998) The importance to ardeids of the deep bay fish ponds, Hong Kong. Biol Conserv 84:293–300

    Article  Google Scholar 

  • Zelnik I, Potisek M, Gaberščik A (2012) Environmental conditions and macrophytes of karst ponds. Pol J Environ Stud 21:1911–1920

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Education, Youth and Sports of the Czech Republic under the project PROFISH (CZ.02.1.01/0.0/0.0/16_019/0000869) and CENAKVA (LM2018099), by the Czech Science Foundation projects (14-36079G—Centre of Excellence PLADIAS and 17-09310S); and by the Czech Academy of Sciences (RVO 67985939). The authors thank B. Drozd, R. Gebauer and M. Rutegwa for help with field work, and fish farmers of Rybářství Hluboká CZ s.r.o. and Blatenská ryba s.r.o. Further, we thank the editors and the reviewers for the valuable comments and suggestions on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateřina Francová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 92 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francová, K., Šumberová, K., Kučerová, A. et al. Drivers of plant species composition of ecotonal vegetation in two fishpond management types. Wetlands Ecol Manage 29, 93–110 (2021). https://doi.org/10.1007/s11273-020-09770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-020-09770-9

Keywords

Navigation