Skip to main content

Advertisement

Log in

Proximity to Roads Does Not Modify Inorganic Nitrogen Deposition in a Topographically Complex, High Traffic, Subalpine Forest

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript
  • 7 Altmetric

Abstract

Vehicles are an important source for N deposition that may negatively impact roadside ecosystems. While elevated roadside N deposition has been found in many locations, it is not yet known if vehicle emissions cause measurable increases of N deposition in complex, mountainous terrain adjacent to roads. To address this, this study investigated the effect of vehicle N emissions on throughfall (through trees) and open N deposition in a high traffic corridor in mountainous terrain of Rocky Mountain National Park, Colorado, USA. We measured bulk (wet + dry) atmospheric N deposition in throughfall and open samplers along two transects of 750 (throughfall) and 225 (open) m moving away from the road using ion exchange resin (IER) collectors. Contrary to most studies of roadside N deposition, we found no influence of road proximity on inorganic N deposition in throughfall or open sites, possibly due to terrain complexity. Interactions with vegetation modified regional N deposition; throughfall sites had 69% higher nitrate (NO3) deposition than open sites and larger trees were associated with higher ammonium (NH4+) deposition as compared to smaller trees. When comparing to regional sites that are part of national monitoring networks, we confirmed that our estimates were unaffected by vehicle emissions as our throughfall IER collectors had similar total inorganic N deposition as wet + dry deposition from regional sites (8.64–13.56 vs 10.72–12.14 g N ha−1 day−1, respectively). These findings do not negate vehicles as a local source of N emissions but suggest elevated N deposition adjacent to busy roads cannot be assumed for complex terrains. Instead, environmental variables may be more important drivers than proximity to roads in topographically complex ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available in the Environmental Data Initiative repository: https://doi.org/10.6073/pasta/3b9095eb0d80afb6456a61ab37bb6b72

References

  • Adriaenssens, S., et al. (2011). Foliar nitrogen uptake from wet deposition and the relation with leaf wettability and water storage capacity. Water, Air, & Soil Pollution, 219, 43–57.

    Article  Google Scholar 

  • Baron, J. S., Rueth, H. M., Wolfe, A. M., Nydick, K. R., Allstott, E. J., Minear, J. T., & Moraska, B. (2000). Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems, 3, 352–368. https://doi.org/10.1007/s100210000032

    Article  CAS  Google Scholar 

  • Benedict, K., Carrico, C., Kreidenweis, S., Schichtel, B., Malm, W., & Collett, J., Jr. (2013a). A seasonal nitrogen deposition budget for Rocky Mountain National Park. Ecological Applications, 23, 1156–1169.

    Article  CAS  Google Scholar 

  • Benedict, K. B., Day, D., Schwandner, F. M., Kreidenweis, S. M., Schichtel, B., Malm, W. C., & Collett, J. L., Jr. (2013b). Observations of atmospheric reactive nitrogen species in Rocky Mountain National Park and across northern Colorado. Atmospheric Environment, 64, 66–76.

    Article  CAS  Google Scholar 

  • Benedict, K. B., et al. (2018). Impact of front range sources on reactive nitrogen concentrations and deposition in Rocky Mountain National Park. PeerJ, 6, e4759.

    Article  Google Scholar 

  • Bettez, N. D., Marino, R., Howarth, R. W., & Davidson, E. A. (2013). Roads as nitrogen deposition hot spots. Biogeochemistry, 114, 149–163.

    Article  CAS  Google Scholar 

  • Bignal, K. L., Ashmore, M. R., Headley, A. D., Stewart, K., & Weigert, K. (2007). Ecological impacts of air pollution from road transport on local vegetation. Applied Geochemistry, 22, 1265–1271.

    Article  CAS  Google Scholar 

  • Bishop, G. A., & Stedman, D. H. (2015). Reactive nitrogen species emission trends in three light-/medium-duty United States fleets. Environmental Science & Technology, 49, 11234–11240.

    Article  CAS  Google Scholar 

  • Cape, J. N., Tang, Y. S., Van Dijk, N., Love, L., Sutton, M. A., & Palmer, S. C. F. (2004). Concentrations of ammonia and nitrogen dioxide at roadside verges, and their contribution to nitrogen deposition. Environmental Pollution, 132, 469–478. https://doi.org/10.1016/j.envpol.2004.05.009

    Article  CAS  Google Scholar 

  • Carslaw, D. C., Farren, N. J., Vaughan, A. R., Drysdale, W. S., Young, S., & Lee, J. D. (2019). The diminishing importance of nitrogen dioxide emissions from road vehicle exhaust. Atmospheric Environment. https://doi.org/10.1016/j.aeaoa.2018.100002

    Article  Google Scholar 

  • Clark, S. C., Barnes, R. T., Oleksy, I. A., Baron, J. S., & Hastings, M. G. (2021). Persistent nitrate in alpine waters with changing atmospheric deposition and warming trends. Environmental Science & Technology, 55, 14946–14956.

    Article  CAS  Google Scholar 

  • Clow, D. W., Roop, H. A., Nanus, L., Fenn, M. E., & Sexstone, G. A. (2015). Spatial patterns of atmospheric deposition of nitrogen and sulfur using ion-exchange resin collectors in Rocky Mountain National Park, USA. Atmospheric Environment, 101, 149–157.

    Article  CAS  Google Scholar 

  • Cook, E. M., Sponseller, R., Grimm, N. B., & Hall, S. J. (2018). Mixed method approach to assess atmospheric nitrogen deposition in arid and semi-arid ecosystems. Environmental Pollution, 239, 617–630.

    Article  CAS  Google Scholar 

  • Creany, N. & Monz, C. (2022). Reservation for Bear Lake at 10am, party of four: A look into the RMNP Timed Entry Permit System from 2020 to 2021 [Conference Presentation].Continental Divide Research Learning Center: Science Behind the Scenery Webinar Series. Estes Park, CO.

  • Davison, J., et al. (2020). Distance-based emission factors from vehicle emission remote sensing measurements. Science of the Total Environment, 739, 139688.

    Article  CAS  Google Scholar 

  • De Schrijver, A., et al. (2008). Effect of vegetation type on throughfall deposition and seepage flux. Environmental Pollution, 153, 295–303.

    Article  Google Scholar 

  • Elliott, E. M., et al. (2009). Dual nitrate isotopes in dry deposition: Utility for partitioning NOxsource contributions to landscape nitrogen deposition. Journal of Geophysical Research: Biogeosciences, 114, 1–15. https://doi.org/10.1029/2008JG000889

    Article  Google Scholar 

  • Environmental Protection agency (EPA). (2020). 2017 National Emissions Inventory Data. Air Emissions Inventories. Available at: https://www.epa.gov/air-emissions-inventories/reports-and-summaries. Accessed Nov 2022.

  • Environmental Protection Agency (EPA). (2021). 2017 National Emissions Inventory Report. Available at: https://gispub.epa.gov/neireport/2017/. Accessed Nov 2022.

  • Erisman, J. W., & Draaijers, G. (2003). Deposition to forests in Europe: Most important factors influencing dry deposition and models used for generalization. Environmental Pollution, 124, 379–388.

    Article  CAS  Google Scholar 

  • Evans, C. D., et al. (2008). Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? A review of evidence from field nitrogen addition experiments. Biogeochemistry, 91, 13–35.

    Article  CAS  Google Scholar 

  • Fang, Y. T., et al. (2011). Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China. Global Change Biology, 17, 872–885. https://doi.org/10.1111/j.1365-2486.2010.02283.x

    Article  Google Scholar 

  • Farren, N. J., Davison, J., Rose, R. A., Wagner, R. L., & Carslaw, D. C. (2020). Underestimated ammonia emissions from road vehicles. Environmental Science & Technology, 54, 15689–15697.

    Article  CAS  Google Scholar 

  • Felix, J. D., Berner, A., Wetherbee, G. A., Murphy, S. F., & Heindel, R. C. (2023). Nitrogen isotopes indicate vehicle emissions and biomass burning dominate ambient ammonia across Colorado’s Front Range urban corridor. Environmental Pollution, 316, 120537.

    Article  CAS  Google Scholar 

  • Fenn, M. E., & Bytnerowicz, A. (1993). Dry deposition of nitrogen and sulfur to ponderosa and Jeffrey pine in the San Bernardino National Forest in southern California. Environmental Pollution, 81, 277–285.

    Article  CAS  Google Scholar 

  • Fenn, M. E., & Poth, M. A. (2004). Monitoring nitrogen deposition in throughfall using ion exchange resin columns. Journal of Environmental Quality, 33, 2007–2014.

    Article  CAS  Google Scholar 

  • Fenn, M. E., et al. (2018b). On-road emissions of ammonia: An underappreciated source of atmospheric nitrogen deposition. Science of the Total Environment, 625, 909–919.

    Article  CAS  Google Scholar 

  • Fenn ME, Blubaugh T, Alexander D, & Jones D. (2016). Second Gen IER methods. USDA Forest Service. Available at: https://www.fs.usda.gov/psw/topics/air_quality/resin_collectors/fenn_iermethods.pdf. Accessed Nov 2022.

  • Fenn ME, Bytnerowicz A, & Schilling SL. (2018a). Passive monitoring techniques for evaluating atmospheric ozone and nitrogen exposure and deposition to california ecosystems. USDA Forest Service. Available at: https://permanent.access.gpo.gov/gpo92863/psw_gtr257.pdf. Accessed Nov 2022.

  • Gadsdon, S. R., & Power, S. A. (2009). Quantifying local traffic contributions to NO2 and NH3 concentrations in natural habitats. Environmental Pollution, 157, 2845–2852.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., & Cosby, B. J. (2003). The nitrogen cascade. BioScience, 53, 341–341. https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2

    Article  Google Scholar 

  • García-Gomez, H., et al. (2016). Atmospheric deposition of inorganic nitrogen in Spanish forests of Quercus ilex measured with ion-exchange resins and conventional collectors. Environmental Pollution, 216, 653–661.

    Article  Google Scholar 

  • Guerrieri, R., Vanguelova, E. I., Michalski, G., Heaton, T. H., & Mencuccini, M. (2015). Isotopic evidence for the occurrence of biological nitrification and nitrogen deposition processing in forest canopies. Global Change Biology, 21, 4613–4626.

    Article  Google Scholar 

  • Guerrieri, R., et al. (2020). Partitioning between atmospheric deposition and canopy microbial nitrification into throughfall nitrate fluxes in a Mediterranean forest. Journal of Ecology, 108, 626–640.

    Article  CAS  Google Scholar 

  • Hanawalt, R. B. (1969). Environmental factors influencing the sorption of atmospheric ammonia by soils. Soil Science Society of America Journal, 33, 231–234.

    Article  CAS  Google Scholar 

  • Harrison A, Schulze E-D, Gebauer G, & Bruckner G. (2000). Canopy uptake and utilization of atmospheric pollutant nitrogen. In E. D. Schulze (Ed.), Carbon and nitrogen cycling in European forest ecosystems. Ecological Studies (vol. 142). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-57219-7_8

  • Hasselrot, B., & Grennfelt, P. (1987). Deposition of air pollutants in a wind-exposed forest edge. Water, Air, and Soil Pollution, 34, 135–143.

    Article  CAS  Google Scholar 

  • Heindel RC, Murphy SF, Repert DA, Wetherbee GA, Liethen AE, Clow DW, & Halamka TA. (2022). Elevated Nitrogen Deposition to Fire‐Prone Forests Adjacent to Urban and Agricultural Areas, Colorado Front Range, USA. Earth's Future: e2021EF002373.

  • Hoffman, A. S., Albeke, S. E., McMurray, J. A., Evans, R. D., & Williams, D. G. (2019). Nitrogen deposition sources and patterns in the Greater Yellowstone Ecosystem determined from ion exchange resin collectors, lichens, and isotopes. Science of the Total Environment, 683, 709–718.

    Article  CAS  Google Scholar 

  • Huang, J., Zhang, W., Zhu, X., Gilliam, F. S., Chen, H., Lu, X., & Mo, J. (2015). Urbanization in China changes the composition and main sources of wet inorganic nitrogen deposition. Environmental Science and Pollution Research, 22, 6526–6534.

    Article  CAS  Google Scholar 

  • Huber, C., Oberhauser, A., & Kreutzer, K. (2002). Deposition of ammonia to the forest floor under spruce and beech at the Höglwald site. Plant and Soil, 240, 3–11.

    Article  CAS  Google Scholar 

  • IRMA. (2022). NPS Stats: National Park Service Visitor Use Statistics. Available at: https://irma.nps.gov/STATS/Reports/Park/ROMO. Accessed Nov 2022.

  • Jacob, D. J. (1999). Introduction to atmospheric chemistry. Princeton University Press.

    Google Scholar 

  • Jovan, S., et al. (2021). Challenges characterizing N deposition to high elevation protected areas: A case study integrating instrument, simulated, and lichen inventory datasets for the Devils Postpile National Monument and surrounding region, USA. Ecological Indicators, 122, 107311.

    Article  CAS  Google Scholar 

  • Kenkel, J. A., Sisk, T. D., Hultine, K. R., Sesnie, S. E., Bowker, M. A., & Johnson, N. C. (2016). Indicators of vehicular emission inputs into semi-arid roadside ecosystems. Journal of Arid Environments, 134, 150–159.

    Article  Google Scholar 

  • Langford, A., & Fehsenfeld, F. (1992). Natural vegetation as a source or sink for atmospheric ammonia: A case study. Science, 255, 581–583.

    Article  CAS  Google Scholar 

  • Lenth, R. (2020). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.1. https://CRAN.R-project.org/package=emmeans. Accessed Nov 2022.

  • Li, X., et al. (2021). Canopy and understory nitrogen addition have different effects on fine root dynamics in a temperate forest: Implications for soil carbon storage. New Phytologist, 231, 4.

    Article  Google Scholar 

  • Liu, X.-Y., et al. (2017). Stable isotope analyses of precipitation nitrogen sources in Guiyang, southwestern China. Environmental Pollution, 230, 486–494.

    Article  CAS  Google Scholar 

  • Lu, M., Zhou, X., Luo, Y., Yang, Y., Fang, C., Chen, J., & Li, B. (2011). Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis. Agriculture, Ecosystems and Environment., 140, 234–244. https://doi.org/10.1016/j.agee.2010.12.010

    Article  CAS  Google Scholar 

  • Mast, M. A., Clow, D. W., Baron, J. S., & Wetherbee, G. A. (2014). Links between N deposition and nitrate export from a high-elevation watershed in the Colorado Front Range. Environmental Science & Technology, 48, 14258–14265.

    Article  CAS  Google Scholar 

  • McDonald BC, Dallmann TR, Martin EW, & Harley RA. (2012). Long‐term trends in nitrogen oxide emissions from motor vehicles at national, state, and air basin scales. Journal of Geophysical Research: Atmospheres, 117, D21. https://doi.org/10.1029/2012JD018304

  • Nanus, L., Campbell, D. H., Lehmann, C. M., & Mast, M. A. (2018). Spatial and temporal variation in sources of atmospheric nitrogen deposition in the Rocky Mountains using nitrogen isotopes. Atmospheric Environment, 176, 110–119.

    Article  CAS  Google Scholar 

  • National Atmospheric Deposition Program (NADP). (1987) NADP/NTN Annual Data Summary: Precipitation Chemistry in the United States. 1986. Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO.

  • National Park Service (NPS). (2022). Most famous national parks set visitation records in 2021. Available at: https://www.nps.gov/orgs/1207/most-famous-national-parks-set-visitation-records-in-2021.htm. Accessed Nov 2022.

  • Papen, H., Geβler, A., Zumbusch, E., & Rennenberg, H. (2002). Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input. Current Microbiology, 44, 56–60.

    Article  CAS  Google Scholar 

  • Patterson, K. (2019). Record Visitation At Rocky Mountain National Park In 2018. National Park Service.

  • R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

  • Redling, K., Elliott, E., Bain, D., & Sherwell, J. (2013). Highway contributions to reactive nitrogen deposition: Tracing the fate of vehicular NOxusing stable isotopes and plant biomonitors. Biogeochemistry, 116, 261–274. https://doi.org/10.1007/s10533-013-9857-x

    Article  CAS  Google Scholar 

  • Rocci, K. S., Fonte, S. J., von Fischer, J. C., & Cotrufo, M. F. (2019). Nitrogen dynamics in an established alfalfa field under low biochar application rates. Soil Systems, 3, 77.

    Article  CAS  Google Scholar 

  • Rueth, H. M., & Baron, J. S. (2002). Differences in Englemann spruce forest biogeochemistry east and west of the Continental Divide in Colorado, USA. Ecosystems, 5, 45–57.

    Article  Google Scholar 

  • Schwede, D. B., & Lear, G. G. (2014). A novel hybrid approach for estimating total deposition in the United States. Atmospheric Environment, 92, 207–220.

    Article  CAS  Google Scholar 

  • Sparks, J. P. (2009). Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia, 159, 1–13.

    Article  Google Scholar 

  • Thompson, T. M., et al. (2015). Rocky Mountain National Park reduced nitrogen source apportionment. Journal of Geophysical Research: Atmospheres, 120, 4370–4384.

    Article  CAS  Google Scholar 

  • Tulloss, E. M., & Cadenasso, M. L. (2015). Nitrogen deposition across scales: Hotspots and gradients in a California savanna landscape. Ecosphere, 6, 1–12.

    Article  Google Scholar 

  • United States Department of Agriculture (USDA) (2022). Bear Lake SNOTEL site. Available at: https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=322. Accessed Nov 2022.

  • Vogt JT, & Smith WB. (2017). Forest Inventory and Analysis Fiscal Year 2016 Business Report. United States Forest Service. Available at: https://www.fs.usda.gov/sites/default/files/fs_media/fs_document/publication-15817-usda-forest-service-fia-annual-report-508.pdf. Accessed Nov 2022.

  • Weathers, K. C., Lovett, G., Likens, G., & Lathrop, R. (2000). The effect of landscape features on deposition to Hunter Mountain, Catskill Mountains, New York. Ecological Applications, 10, 528–540.

    Article  Google Scholar 

  • Weathers, K. C., Simkin, S. M., Lovett, G. M., & Lindberg, S. E. (2006). Empirical modeling of atmospheric deposition in mountainous landscapes. Ecological Applications, 16, 1590–1607.

    Article  Google Scholar 

  • Wetherbee, G. A., Benedict, K. B., Murphy, S. F., & Elliott, E. M. (2019). Inorganic nitrogen wet deposition gradients in the Denver-Boulder metropolitan area and Colorado Front Range-Preliminary implications for Rocky Mountain National Park and interpolated deposition maps. Science of the Total Environment, 691, 1027–1042.

    Article  CAS  Google Scholar 

  • Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag.

    Book  Google Scholar 

  • Xu, S., Chen, M., Feng, T., Zhan, L., Zhou, L., & Yu, G. (2021). Use ggbreak to effectively utilize plotting space to deal with large datasets and outliers. Frontiers in Genetics, 12, 774846. https://doi.org/10.3389/fgene.2021.774846

    Article  CAS  Google Scholar 

  • Yue, K., Peng, Y., Peng, C., Yang, W., Peng, X., & Wu, F. (2016). Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: A meta-analysis. Scientific Reports, 6, 19895. https://doi.org/10.1038/srep19895

    Article  CAS  Google Scholar 

  • Zhang, Q., et al. (2021). Atmospheric nitrogen deposition: A review of quantification methods and its spatial pattern derived from the global monitoring networks. Ecotoxicology and Environmental Safety, 216, 112180.

    Article  CAS  Google Scholar 

  • Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1, 3–14.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Rebecca Even, Kaydee Barker, Leland Dorchester, Amy Rocci, Tim Weinmann, and Caitlin Charlton for their assistance in the field. We also thank Scott Esser and Lisa Baron at Rocky Mountain National Park for their assistance in facilitating this research. This research was conducted under permit numbers: ROMO-2021-SCI-0013 & ROMO-2021-SCI-0019. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program and a small grant from the Colorado State University Graduate Degree Program in Ecology, both awarded to K. S. Rocci.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Katherine Rocci. The first draft of the manuscript was written by Katherine Rocci and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Katherine S. Rocci.

Ethics declarations

Competing Interests

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4.46 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocci, K.S., Cotrufo, M.F. & Baron, J.S. Proximity to Roads Does Not Modify Inorganic Nitrogen Deposition in a Topographically Complex, High Traffic, Subalpine Forest. Water Air Soil Pollut 234, 761 (2023). https://doi.org/10.1007/s11270-023-06762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06762-2

Keywords

Navigation