Skip to main content

Advertisement

Log in

A Review on the Use of Nanoclay Adsorbents in Environmental Pollution Control

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Clay is a natural substance widely existing in the environment. Nanoclays have small particle size, large surface area, and high porosity. Due to their special characteristics, nanoclays can be used in many different industrial applications. There is also an emerging trend for the use of nanoclays in environmental applications. Nanoclays can be used as adsorbents for the removal of various pollutants from water and gas. The suitability of nanoclays for certain type of application will depend on the requirement for pollution control, as well as the specifications of nanoclays. This article provided a comprehensive review of the specific characteristics of different types of nanoclays. The industrial applications of nanoclays were summarized. The environmental applications of nanoclays for water and gas emission treatment, as well as their toxicity, were discussed. The challenges and recommendations for future study were also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing not applicable.

References

  • Adib, F., Bagreev, A., & Bandosz, T. J. (2000). Analysis of the relationship between H2S removal capacity and surface properties of unimpregnated activated carbons. Environmental Science and Technology, 34, 686–692.

    Article  CAS  Google Scholar 

  • Ali, M. E. A. (2019). Preparation of graphene nanosheets by electrochemical exfoliation of a graphite-nanoclay composite electrode: Application for the adsorption of organic dyes. Colloids Surfaces A Physicochem. Eng. Asp., 570, 107–116.

    Article  CAS  Google Scholar 

  • Almasri, D. A., Rhadfi, T., Atieh, M. A., McKay, G., & Ahzi, S. (2018). High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal. Chemical Engineering Journal, 335, 1–12.

    Article  CAS  Google Scholar 

  • An, C., He, Y., Huang, G., & Liu, Y. (2010). Performance of mesophilic anaerobic granules for removal of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from aqueous solution. Journal of Hazardous Materials, 179, 526–532.

    Article  CAS  Google Scholar 

  • Asadi, M., & Montazer, M. (2013). Multi-functional polyester hollow fiber nonwoven fabric with using nano clay/nano TiO2/polysiloxane composites. Journal of Inorganic and Organometallic Polymers and Materials, 23, 1358–1367.

    Article  CAS  Google Scholar 

  • Asif, Z., & Chen, Z. (2020). A life cycle based air quality modeling and decision support system (LCAQMS) for sustainable mining management. Journal of Environmental Informatics, 35(2), 103–117.

    Google Scholar 

  • Awasthi, A., Jadhao, P., & Kumari, K. (2019). Clay nano-adsorbent: Structures, applications and mechanism for water treatment. SN Applied Science, 1, 1–21.

    CAS  Google Scholar 

  • Babamiri, O., Vanaei, A., Guo, X., Wu, P., Richter, A., & Ng, K. T. W. (2021). Numerical simulation of water quality and self-purification in a mountainous river using QUAL2KW. Journal of Environmental Informatics, 37(1), 26–35.

    Google Scholar 

  • Bergaya, F., & Lagaly, G. (2006). Chapter 1 General introduction: Clays, clay minerals, and clay science. In: Developments in Clay Science. Elsevier, pp. 1–18.

  • Bhattacharjee, C., Dutta, S., & Saxena, V. K. (2020). A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent. Environmental advanced, 2, 100007.

    Article  Google Scholar 

  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140(2), 114–131.

    Article  CAS  Google Scholar 

  • Bi, H., An, C., Mulligan, C. N., Zhang, K., Lee, K., & Yue, R. (2022). Treatment of oiled beach sand using a green and responsive washing fluid with nonionic surfactant-modified nanoclay. The Journal of Cleaner Production, 333, 130122.

    Article  CAS  Google Scholar 

  • Brigatti, M. F., Galan, E., & Theng, B. K. G. (2006). Chapter 2 Structures and mineralogy of clay minerals. In: Developments in Clay Science. Elsevier, pp. 19–86.

  • Calabi Floody, M., Theng, B. K. G., Reyes, P., & Mora, M. L. (2009). Natural nanoclays: Applications and future trends – a Chilean perspective. Clay Minerals, 44(2), 161–176.

  • Chen, W., & Liu, H. C. (2014). Adsorption of sulfate in aqueous solutions by organo-nano-clay: Adsorption equilibrium and kinetic studies. Journal of Central South University, 21, 1974–1981.

    Article  CAS  Google Scholar 

  • Chen, Y. M., Tsao, T. M., Wang, M. K., Yu, S., Liu, C. C., Li, H. C., Chiu, C. Y., & Wang, L. C. (2015). Kinetic and thermodynamic studies on removal of Cu(II) from aqueous solutions using soil nanoclays. Water Environment Research, 87, 88–95.

    Article  CAS  Google Scholar 

  • Choy, J. H., Choi, S. J., Oh, J. M., & Park, T. (2007). Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science, 36, 122–132.

    Article  CAS  Google Scholar 

  • Coro, E., & Laha, S. (2001). Color removal in groundwater through the enhanced softening process. Water Research, 35, 1851–1854.

    Article  CAS  Google Scholar 

  • Dong, C., Huang, G., Cheng, G., An, C., Yao, Y., Chen, X., & Chen, J. (2019). Wastewater treatment in amine-based carbon capture. Chemosphere, 22, 742–756.

  • El Haouti, R., Ouachtak, H., El Guerdaoui, A., Amedlous, A., Amaterz, E., Haounati, R., Addi, A. A., Akbal, F., El Alem, N., & Taha, M. L. (2019). Cationic dyes adsorption by Na-Montmorillonite Nano Clay: Experimental study combined with a theoretical investigation using DFT-based descriptors and molecular dynamics simulations. Journal of Molecular Liquids, 290, 111139.

    Article  CAS  Google Scholar 

  • Eslinger, E., & Pevear, D. (1988). Clay Minerals for Petroleum Geologists and Engineers. SEPM (Society for Sedimentary Geology).

    Book  Google Scholar 

  • Fakhrullina, G. I., Akhatova, F. S., Lvov, Y. M., & Fakhrullin, R. F. (2015). Toxicity of halloysite clay nanotubes in vivo: A Caenorhabditis elegans study. Environmental Science. Nano, 2, 54–59.

    Article  CAS  Google Scholar 

  • Feng, Q., An, C., Chen, Z., & Wang, Z. (2020). Can deep tillage enhance carbon sequestration in soils? A meta-analysis towards GHG mitigation and sustainable agricultural management. Renewable and Sustainable Energy Reviews, 133, 110293.

  • Foorginezhad, S., & Zerafat, M. M. (2017). Microfiltration of cationic dyes using nano-clay membranes. Ceramics International, 43, 15146–15159.

    Article  CAS  Google Scholar 

  • Fradique, R., Correia, T. R., Miguel, S. P., de Sá, K. D., Figueira, D. R., Mendonça, A. G., & Correia, I. J. (2016). Production of new 3D scaffolds for bone tissue regeneration by rapid prototyping. Journal of Materials Science. Materials in Medicine, 27, 1–14.

    Article  CAS  Google Scholar 

  • Fu, L., Datta, K. K. R., Spyrou, K., Qi, G., Sardar, A., Khader, M. M., Zboril, R., & Giannelis, E. P. (2017). Phyllosilicate nanoclay-based aqueous nanoparticle sorbent for CO2 capture at ambient conditions. Applied Materials Today, 9, 451–455.

    Article  Google Scholar 

  • Garrido-Ramírez, E. G., Theng, B. K. G., & Mora, M. L. (2010). Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - A review. Applied Clay Science, 47(3-4), 82–192.

  • Ghodke, S., Sonawane, S., Gaikawad, R., & Mohite, K. C. (2012). TiO2/Nanoclay nanocomposite for phenol degradation in sonophotocatalytic reactor. Canadian Journal of Chemical Engineering, 90, 1153–1159.

    Article  CAS  Google Scholar 

  • Guo, F., & Aryana, S. (2016). An experimental investigation of nanoparticle-stabilized CO2 foam used in enhanced oil recovery. Fuel, 186, 430–442.

    Article  CAS  Google Scholar 

  • Gurses, A. (2015). Introduction to Polymer-Clay Nanocomposites. Jenny Stanford Publishing.

    Book  Google Scholar 

  • He, J. Y., Lang, Y. C., Xiao, L., & Christakos, G. (2020). Space-time ground-level PM2.5 distribution at the Yangtze River delta: A comparison of Kriging, LUR, and combined BME-LUR techniques. Journal of Environmental Informatics, 36(1), 33–42.

    Google Scholar 

  • He, Y., Huang, G., An, C., Huang, J., Zhang, P., Chen, X., & Xin, X. (2018). Reduction of Escherichia Coli using ceramic disk filter decorated by nano-TiO2: A low-cost solution for household water purification. Science of the Total Environment, 616–617, 1628–1637.

    Article  CAS  Google Scholar 

  • Isoda, K., Nagata, R., Hasegawa, T., Taira, Y., Taira, I., Shimizu, Y., Isama, K., Nishimura, T., & Ishida, I. (2017). Hepatotoxicity and drug/chemical interaction toxicity of nanoclay particles in mice. Nanoscale Research Letters, 12, 199.

    Article  CAS  Google Scholar 

  • Janer, G., Fernández-Rosas, E., Mas Del Molino, E., González-Gálvez, D., Vilar, G., López-Iglesias, C., Ermini, V., & Vázquez-Campos, S. (2014). In vitro toxicity of functionalised nanoclays is mainly driven by the presence of organic modifiers. Nanotoxicology, 8, 279–294.

    Article  CAS  Google Scholar 

  • Jeswani, H. K., Gujba, H., Brown, N. W., Roberts, E. P. L., & Azapagic, A. (2015). Removal of organic compounds from water: Life cycle environmental impacts and economic costs of the Arvia process compared to granulated activated carbon. Journal of Cleaner Production, 89, 203–213.

    Article  CAS  Google Scholar 

  • Ji, L., Huang, G. H., Niu, D. X., Cai, Y. P., & Yin, J. G. (2020). A stochastic optimization model for carbon-emission reduction investment and sustainable energy planning under cost-risk control. Journal of Environmental Informatics, 36(2), 107–118.

    Google Scholar 

  • Joseph, L., Jun, B. M., Flora, J. R. V., Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere.

  • Khajeh, M., & Ghaemi, A. (2020). Exploiting response surface methodology for experimental modeling and optimization of CO2 adsorption onto NaOH-modified nanoclay montmorillonite. Journal of Environmental Chemical Engineering, 8, 103663.

    Article  CAS  Google Scholar 

  • Kong, F. Y., Gu, S. X., Li, W. W., Chen, T. T., Xu, Q., & Wang, W. (2014). A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination. Biosensors & Bioelectronics, 56, 77–82.

    Article  CAS  Google Scholar 

  • Kryuchkova, M., Danilushkina, A., Lvov, Y., & Fakhrullin, R. (2016). Evaluation of toxicity of nanoclays and graphene oxide: In vivo A Paramecium caudatum study. Environmental Science. Nano, 3, 442–452.

    Article  CAS  Google Scholar 

  • La, Z., & Chai, L. H. (2021). Comprehensive study of evolution of global environmental quality research using informetric co-word network. Journal of Environmental Informatics, 38(2), 116–130.

    Google Scholar 

  • Leodopoulos, C., Doulia, D., & Gimouhopoulos, K. (2015). Adsorption of cationic dyes onto bentonite. Separation and Purification Reviews, 44, 74–107.

    Article  CAS  Google Scholar 

  • Liu, B., Chen, B., Zhang, B., Song, X., Zeng, G., & Lee, K. (2021). Photocatalytic ozonation of offshore produced water by TiO2 nanotube arrays coupled with UV-LED irradiation. Journal of Hazardous Materials, 402, 123456.

    Article  CAS  Google Scholar 

  • Lordan, S., Kennedy, J. E., & Higginbotham, C. L. (2011). Cytotoxic effects induced by unmodified and organically modified nanoclays in the human hepatic HepG2 cell line. Journal of Applied Toxicology, 31, 27–35.

    Article  CAS  Google Scholar 

  • M. Roberto, M., A. Christofoletti, C. (2020). How to assess nanomaterial toxicity? An environmental and human health approach, in: Nanomaterials - Toxicity, Human Health and Environment. IntechOpen.

  • Maisanaba, S., Gutiérrez-Praena, D., Pichardo, S., Moreno, F. J., Jordá, M., Cameán, A. M., Aucejo, S., & Jos, Á. (2014). Toxic effects of a modified montmorillonite clay on the human intestinal cell line Caco-2. Journal of Applied Toxicology, 34, 714–725.

    Article  CAS  Google Scholar 

  • Maisanaba, S., Puerto, M., Pichardo, S., Jordá, M., Moreno, F. J., Aucejo, S., & Jos, Á. (2013). In vitro toxicological assessment of clays for their use in food packaging applications. Food and Chemical Toxicology, 57, 266–275.

    Article  CAS  Google Scholar 

  • Martin, R. T. (1991). Report of the clay minerals society nomenclature committee: Revised classification of clay materials. Clays and Clay Minerals, 39, 333–335.

    Article  CAS  Google Scholar 

  • Matei, E., Rapa, M., Covaliu, C. I., Predescu, A. M., Turcanu, A., Predescu, C., Ignat, D., & Vlad, G. (2020). Sodium alginate-cellulose-nano-clay composite adsorbent applied for lead removal from wastewater. Revista De Chimie, 71, 416–424.

    Article  CAS  Google Scholar 

  • Mestre, A. S., Pinto, M. L., Pires, J., Nogueira, J. M. F., & Carvalho, A. P. (2010). Effect of solution pH on the removal of clofibric acid by cork-based activated carbons. Carbon N. Y., 48, 972–980.

    Article  CAS  Google Scholar 

  • Mohamadalizadeh, A., Towfighi, J., Rashidi, A., Manteghian, M., Mohajeri, A., & Arasteh, R. (2011). Nanoclays as nano adsorbent for oxidation of H2S into elemental sulfur. Korean Journal of Chemical Engineering, 28, 1221–1226.

    Article  CAS  Google Scholar 

  • Mohanadhas, B., & Govindarajan, S. K. (2018). Modeling the sensitivity of hydrogeological parameters associated with leaching of uranium transport in an unsaturated porous medium. Environmental Engineering Research, 23, 462–473.

    Article  Google Scholar 

  • Motta, A. T., Yilmazbayhan, A., da Silva, M. J. G., Comstock, R. J., Was, G. S., Busby, J. T., Gartner, E., Peng, Q., Jeong, Y. H., & Park, J. Y. (2007). Zirconium alloys for supercritical water reactor applications: Challenges and possibilities. Journal of Nuclear Materials, 371, 61–75.

    Article  CAS  Google Scholar 

  • Mousavi, S. M., Hashemi, S. A., Salahi, S., Hosseini, M., Amani, A. M., & Babapoor, A. (2018). Development of clay nanoparticles toward bio and medical applications, in: Current Topics in the Utilization of Clay in Industrial and Medical Applications. InTech.

  • Murphy, E. J., Roberts, E., Anderson, D. K., & Horrocks, L. A. (1993). Cytotoxicity of aluminum silicates in primary neuronal cultures. Neuroscience, 57, 483–490.

    Article  CAS  Google Scholar 

  • Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. The Biochemical Journal, 417, 1–13.

    Article  CAS  Google Scholar 

  • Naqvi, S., Kumar, V., & Gopinath, P. (2018). Nanomaterial toxicity: A challenge to end users. Elsevier.

    Google Scholar 

  • Newman, D. J., & Cragg, G. M., (2007). Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70(3), 461-477.

  • Njuguna, J., Pielichowski, K., & Zhu, H. (2014). Health and environmental safety of nanomaterials: Polymer nancomposites and other materials containing nanoparticles, Health and Environmental Safety of Nanomaterials: Polymer Nancomposites and Other Materials Containing Nanoparticles. Woodhead Publishing.

    Google Scholar 

  • Ormad, M. P., Miguel, N., Claver, A., Matesanz, J. M., & Ovelleiro, J. L. (2008). Pesticides removal in the process of drinking water production. Chemosphere, 71, 97–106.

    Article  CAS  Google Scholar 

  • Rafati, L., Ehrampoush, M. H., Rafati, A. A., Mokhtari, M., & Mahvi, A. H. (2018). Removal of ibuprofen from aqueous solution by functionalized strong nano-clay composite adsorbent: Kinetic and equilibrium isotherm studies. International Journal of Environmental Science and Technology, 15, 513–524.

    Article  CAS  Google Scholar 

  • Rafati, L., Ehrampoush, M. H., Rafati, A. A., Mokhtari, M., & Mahvi, A. H. (2016). Modeling of adsorption kinetic and equilibrium isotherms of naproxen onto functionalized nano-clay composite adsorbent. Journal of Molecular Liquids, 224, 832–841.

    Article  CAS  Google Scholar 

  • Rai, M., Biswas, J. K. (2018). Nanomaterials: Ecotoxicity, safety, and public perception. Springer International Publishing.

  • Ramadass, K., Sathish, C. I., Mariaruban, S., Kothandam, G., Joseph, S., Singh, G., Kim, S., Cha, W., Karakoti, A., Belperio, T., Yi, J. B., & Vinu, A. (2020). Carbon nanoflakes and nanotubes from halloysite nanoclays and their superior performance in CO2 capture and energy storage. ACS Applied Materials & Interfaces, 12, 11922–11933.

    Article  CAS  Google Scholar 

  • Ramanayaka, S., Sarkar, B., Cooray, A. T., Ok, Y. S., & Vithanage, M. (2020). Halloysite nanoclay supported adsorptive removal of oxytetracycline antibiotic from aqueous media. Journal of Hazardous Materials., 384, 121301.

    Article  CAS  Google Scholar 

  • Roth, E. A., Agarwal, S., & Gupta, R. K. (2013). Nanoclay-based solid sorbents for CO2 capture. Energy and Fuels, 27, 4129–4136.

    Article  CAS  Google Scholar 

  • Salam, M. A., Kosa, S. A., & Al-Beladi, A. A. (2017). Application of nanoclay for the adsorptive removal of Orange G dye from aqueous solution. Journal of Molecular Liquids, 241, 469–477.

    Article  CAS  Google Scholar 

  • Serrano, M. C., Gutiérrez, M. C., & Del Monte, F. (2014). Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications. Progress in Polymer Science, 39(7), 1448–1471.

    Article  CAS  Google Scholar 

  • Shabeer, T. P. A., Saha, A., Gajbhiye, V. T., Gupta, S., Manjaiah, K. M., & Varghese, E. (2015). Exploitation of nano-bentonite, nano-halloysite and organically modified nano-montmorillonite as an adsorbent and coagulation aid for the removal of multi-pesticides from water: A sorption modelling approach. Water, Air, and Soil Pollution, 226, 41.

    Article  CAS  Google Scholar 

  • Shirsath, S. R., Hage, A. P., Zhou, M., Sonawane, S. H., & Ashokkumar, M. (2011). Ultrasound assisted preparation of nanoclay Bentonite-FeCo nanocomposite hybrid hydrogel: A potential responsive sorbent for removal of organic pollutant from water. Desalination, 281, 429–437.

    Article  CAS  Google Scholar 

  • Shirzad-Siboni, M., Khataee, A., Hassani, A., & Karaca, S. (2015). Preparation, characterization and application of a CTAB-modified nanoclay for the adsorption of an herbicide from aqueous solutions: Kinetic and equilibrium studies. Comptes Rendus Chim., 18, 204–214.

    Article  CAS  Google Scholar 

  • Shrestha, N. K., & Wang, J. (2020). Water quality management of a cold climate region watershed in changing climate. Journal of Environmental Informatics, 35(1), 56–80.

    Google Scholar 

  • Slamova, R., Trckova, M., Vondruskova, H., Zraly, Z., & Pavlik, I. (2011). Clay minerals in animal nutrition. Applied Clay Science, 51(4), 395–398.

    Article  CAS  Google Scholar 

  • Soleimani, M., & Amini, N. (2017). Remediation of environmental pollutants using nanoclays. pp. 279–289.

  • Sonawane, S. H., Chaudhari, P. L., Ghodke, S. A., Parande, M. G., Bhandari, V. M., Mishra, S., & Kulkarni, R. D. (2009). Ultrasound assisted synthesis of polyacrylic acid-nanoclay nanocomposite and its application in sonosorption studies of malachite green dye. Ultrasonics Sonochemistry, 16, 351–355.

    Article  CAS  Google Scholar 

  • Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462.

    Article  CAS  Google Scholar 

  • Unuabonah, E. I., Olu-Owolabi, B. I., Adebowale, K. O., & Yang, L. Z. (2008). Removal of lead and cadmium ions from aqueous solution by polyvinyl alcohol-modified kaolinite clay: A novel nano-clay adsorbent. Adsorption Science & Technology, 26, 383–405.

    Article  CAS  Google Scholar 

  • Verma, N. K., Moore, E., Blau, W., Volkov, Y., & Babu, P. R. (2012). Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis. Journal of Nanoparticle Research, 14, 1137.

  • Vlastou, E., Gazouli, M., Ploussi, A., Platoni, K., & Efstathopoulos, E. P. (2017). Nanoparticles: Nanotoxicity aspects. Journal of Physics: Conference Series, 931, 012020.

    Google Scholar 

  • Wagner, A. (2018). Toxicity evaluations of nanoclays and an associated nanocomposite throughout their life cycle. West Virginia University.

  • Wang, W., Huang, G., An, C., Zhao, S., Chen, X., & Zhang, P. (2018). Adsorption of anionic azo dyes from aqueous solution on cationic gemini surfactant-modified flax shives: Synchrotron infrared, optimization and modeling studies. Journal of Cleaner Production, 172, 1986–1997.

    Article  CAS  Google Scholar 

  • Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites. Part b, Engineering, 110, 442–458.

    Article  CAS  Google Scholar 

  • Wang, Z., An, C., Chen, X., Lee, K., Zhang, B., & Feng, Q. (2021). Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering. Journal of Hazardous Materials., 417, 126036.

    Article  CAS  Google Scholar 

  • Wei, H. W., Hassan, M., Che, Y., Peng, Q. K., Wang, Q., Su, Y. L., & Xie, B. (2021). Spatio-temporal characteristics and source apportionment of water pollutants in upper reaches of Maotiao River, Southwest of China, from 2003 to 2015. Journal of Environmental Informatics, 37(2), 93–106.

    Google Scholar 

  • Xin, X., Huang, G., An, C., Lu, C., & Xiong, W. (2020). Exploring the biophysicochemical alteration of green alga Asterococcus superbus interactively affected by nanoparticles, triclosan and illumination. Journal of Hazardous Materials., 398, 122855.

    Article  CAS  Google Scholar 

  • Xin, X., Huang, G., An, C., Raina-Fulton, R., & Weger, H. (2019). Insights into long-term toxicity of triclosan to freshwater green algae in Lake Erie. Environmental Science and Technology, 53, 2189–2198.

    Article  CAS  Google Scholar 

  • Yadav, V. B., Gadi, R., & Kalra, S. (2018). Synthesis and characterization of novel nanocomposite by using kaolinite and carbon nanotubes. Applied Clay Science, 155, 30–36.

    Article  CAS  Google Scholar 

  • Yahiaoui, F., Benhacine, F., Ferfera-Harrar, H., Habi, A., Hadj-Hamou, A. S., & Grohens, Y. (2015). Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polymer Bulletin, 72, 235–254.

    Article  CAS  Google Scholar 

  • Yang, J., & Tighe, S. (2013). A review of advances of nanotechnology in asphalt mixtures. Procedia - Social and Behavioral Sciences, 96, 1269–1276.

    Article  Google Scholar 

  • Yang, J. H., Lee J. H., Ryu, H. J.,  Elzatahry, A. A., Alothman, Z. A., & Choy, J.H. (2016). Drug–clay nanohybrids as sustained delivery systems. Applied Clay Science, 130, 20-32

    Article  CAS  Google Scholar 

  • Yuan, G. (2004). Natural and modified nanomaterials as sorbents of environmental contaminants. Journal of Environmental Science and Health, Part A, 39, 2661–2670.

    Article  Google Scholar 

  • Yuan, G., & Wu, L. (2007). Allophane nanoclay for the removal of phosphorus in water and wastewater. Science and Technology of Advanced Materials, 8, 60–62.

    Article  CAS  Google Scholar 

  • Zhang, M., Lu, Y., Li, X., Chen, Q., Lu, L., Xing, M., Zou, H., & He, J. (2010). Studying the cytotoxicity and oxidative stress induced by two kinds of bentonite particles on human B lymphoblast cells in vitro. Chemico-Biological Interactions, 183, 390–396.

    Article  CAS  Google Scholar 

  • Zhang, Y., Huang, G., An, C., Xin, X., Liu, X., Raman, M., Yao, Y., Wang, W., & Doble, M. (2017). Transport of anionic azo dyes from aqueous solution to gemini surfactant-modified wheat bran: Synchrotron infrared, molecular interaction and adsorption studies. Science of the Total Environment, 595, 723–732.

    Article  CAS  Google Scholar 

  • Zhao, S., Huang, G., An, C., Wei, J., & Yao, Y. (2015). Enhancement of soil retention for phenanthrene in binary cationic gemini and nonionic surfactant mixtures: Characterizing two-step adsorption and partition processes through experimental and modeling approaches. Journal of Hazardous Materials, 286, 144–151.

    Article  CAS  Google Scholar 

  • Zhao, S., Huang, W., Wang, X., Fan, Y., & An, C. (2019). Sorption of phenanthrene onto diatomite under the influences of solution chemistry: A study of linear sorption based on maximal information coefficient. Journal of Environmental Informatics, 34(1), 35–44.

    Google Scholar 

  • Zhao, Y., Huang, G., An, C., Huang, J., Xin, X., Chen, X., Hong, Y., & Song, P. (2020). Removal of Escherichia Coli from water using functionalized porous ceramic disk filter coated with Fe/TiO2 nano-composites. The Journal of Water Process Engineering, 33, 101013.

    Article  Google Scholar 

  • Zhou, Y. Y., Wang, J. H., Xiao, W. H., Huang, Y. H., Yang, H., Hou, B. D., Chen, Y., & Zhang, H. T. (2021). A hierarchical approach for inland lake pollutant load allocation: A case study in Tangxun Lake Basin, Wuhan, China. Journal of Environmental Informatics, 37(1), 16–25.

    Google Scholar 

Download references

Acknowledgements

The authors are also grateful to the editor and the anonymous reviewers for their insightful comments and suggestions.

Funding

This research was supported by the Multi-partner Research Initiative of Fisheries and Oceans Canada and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjiang An.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iravani, R., An, C., Adamian, Y. et al. A Review on the Use of Nanoclay Adsorbents in Environmental Pollution Control. Water Air Soil Pollut 233, 109 (2022). https://doi.org/10.1007/s11270-022-05580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05580-2

Keywords

Navigation