Skip to main content

Advertisement

Log in

A Review of On-farm Roadway Runoff Characterisation and Potential Management Options for Ireland

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Runoff from farm roadways within farm boundaries are acknowledged as a year-round source of pollutants discharging to surface water, particularly during the main grazing season (Feb-Nov) when their usage is high. These losses are considered to be a significant catchment scale pressure and have led to recent legislation in Ireland to prohibit direct runoff from farm roadways to waters with similar guidance in the UK and New Zealand. However, roadway runoff (RR) remains an undocumented and understudied part of the transfer continuum where knowledge gaps remain in relation to its quantity and composition and in relation to the impacts of RR management options on adjacent surface waters. Indeed some information on mitigation measure design and efficacy is only available from non-agriculture land uses e.g. forestry and needs to be presented in a farm specific context. The present review brings together knowledge on RR in terms of content on- or off-roadway management options and proposes alternative mitigation measures that may require pilot scale testing. Studies show that RR contains a mix of legacy (surface materials) and incidental (fresh urine and faeces) constituents such as phosphorus (P), Escherichia coli (E. Coli) and sediment which become temporarily mobilised during rainfall events. Once mobilised, the roadway network can quickly transport pollutants providing connectivity between farmyards, hard standings, underpasses where attached to a watercourse, fields and even public roadways to watercourses. Its contents are not dissimilar to dilute slurry or dairy soiled water with loads being highest where animals congregate (within 100 m of the farmyard or where roadway configuration or quality impedes stock movement along the network). On-roadway management options include regularly spaced diversion structures that divert runoff for passive treatment in a field or drainage ditch or the application of chemical amendments to roadway surfaces. Off-roadway options can include natural or enhanced features, which attenuate flow leading to settlement of suspended sediment and in some cases treatment of a percentage of the load before delivery to a watercourse. It should be noted that the options presented in this review need to be retrofitted to site specific conditions. Therefore, a number of factors, including their effectiveness, cost and management needs on a particular farm, as well as local regulation requirements will need to be considered prior to implementation. Therefore, only the measures that divert RR away from waters are applicable to Ireland. Future research should develop and validate a farm roadway risk assessment tool to identify vulnerable roadway sections that need management and/or re-design, and identify means of incorporating RR into catchment scale risk assessment models. In addition, design of on- and off-RR management options should consider the wide variations in farm configuration and management with regard to size, topography, soil type/drainage class, enterprise, intensity, scale, stage of development and the potential impacts of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams, R., Arafat, Y., Eate, V., Grace, M. R., Saffarpour, S., Weatherley, A. J., & Western, A. W. (2014). A catchment study of sources and sinks of nutrients and sediments in south-east Australia. Journal Of Hydrology, 515, 166–179.

    Article  CAS  Google Scholar 

  • Addy, K., Gold, A. J., Christianson, L. E., David, M. B., Schipper, L. A., & Ratigan, N. A. (2016). Denitrifying bioreactors for nitrate removal: a meta-analysis. Journal of Environmental Quality, 45(2), 873–881.

  • Akbarimehr, M., & Naghdi, R. (2012). Reduction of erosion from forest roads and skid trails by management practices. Journal of Forest Science, 58, 165–169.

    Article  Google Scholar 

  • Aland, A., Lidfors, L., & Elesbo, I. (2002). Diurnal distribution of dairy cow defecation and urination. Applied Animal Behaviour Science, 78, 43–54.

    Article  Google Scholar 

  • Bibi, S., Farooqi, A., Hussain, K., & Haider, N. (2015). Evaluation of industrial based adsorbents for simultaneous removal of arsenic and fluoride from drinking water. Journal of Cleaner Production, 87, 882e896.

  • Biggs, J., von Fumetti, S., & Kelly-Quinn, M. (2017). The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia, 793, 3–39.

    Article  Google Scholar 

  • Bloser S, & Sheetz B. (2012). Sediment production from unpaved oil well access road in the Allegheny National Forest. University Park (PA): Center for dirt and gravel road studies, The Pennsylvania State University. Report prepared for United States Department of Energy, National Energy Technology Laboratory through URS Corporation and USDA Northern Research Station.

  • Bragina, L., Micha, E., Roberts, W. M., O'Connell, K., O’Donoghue, C., Ryan, M., & Daly, K. (2019). Spatial and temporal variability in costs and effectiveness in phosphorus loss mitigation at farm scale: a scenario analysis. Journal of Environmental Management, 245, 330–337.

    Article  Google Scholar 

  • Braskerud, B. (2002). Design considerations for increased sedimentation in small wetlands treating agricultural runoff. Water Science & Technology, 45(9), 77–85. https://doi.org/10.2166/wst.2002.0209.

  • Brennan, R. B., Fenton, O., Rodgers, M., & Healy, M. G. (2011). Evaluation of chemical amendments to control phosphorus losses from dairy slurry. Soil Use and Management, 27, 238–246.

    Article  Google Scholar 

  • Buchanan, B. P., Archibald, J. A., Easton, Z. M., Shaw, S. B., Schneider, R. L., & Walter, T. A. (2013a). A phosphorus index that combines critical source areas and transport pathways using a travel time approach. Journal of Hydrology, 486, 123–135.

    Article  CAS  Google Scholar 

  • Buchanan, B. P., Falbo, K., Schneider, R. L., Easton, Z. M., & Walter, M. T. (2013b). Hydrological impact of roadside ditches in an agricultural watershed in Central New York: implications for non-point source pollutant transport. Hydrological Processes, 27, 2422–2437.

    Article  Google Scholar 

  • Burchill, W., Reville, F., Misselbrook, T. H., O’Connell, C., & Lanigan, G. J. (2019). Ammonia emissions and mitigation from a concrete yard used by cattle. Biosystems Engineering, 184, 181–189.

    Article  Google Scholar 

  • Chase, E. H., Schneider, R. L., Baker, N. J., Dunn, S. J. (2019). Retrofitting the rural roadside ditch network to treat nitrogen from agricultural runoff using woodchip bioreactors. 12th International Conference on Low-volume Roads. Transportation Research Circular September 15-18, Montana, USA. Drainage and Stream Crossings Section, pp 320–324.

  • Chibuike, G., Burkitt, L., Bretherton, M., Camps-Arbestain, M., Singh, R., Bishop, P., Hedley, C., & Roudier, P. (2019). Dissolved organic carbon concentration and denitrification capacity of a hill country sub-catchment as affected by soil type and slope. New Zealand Journal of Agricultural Research, 62(3), 354–368.

    Article  CAS  Google Scholar 

  • Christianson, L. E., & Schipper, L. A. (2016). Moving denitrifying bioreactors beyond proof of concept: introduction to the special section. Journal of Environmental Quality, 45(3), 757–761.

  • Clagnan, E., Thornton, S. F., Rolfe, S. A., Wells, N. S., Knoeller, K., Murphy, J., Tuohy, P., Daly, K., Healy, M. G., Ezzati, G., von Chamier, J., & Fenton, O. (2019). An integrated assessment of nitrogen source, transformation and fate within an intensive dairy system to inform management change. PLoS One, 14(7), e0219479.

    Article  CAS  Google Scholar 

  • Clarke, P. 2016. Chapter 21: infrastructure. In Dairy Farm Manual, Section 8: Cattle Health. Teagasc.

  • Collins, A. L., Zhang, Y., Walling, D. E., Grenfell, S. E., & Smith, P. (2010). Tracing sediment loss from eroding farm tracks using a geochemical fingerprinting procedure combining local and genetic algorithm optimisation. Science of the Total Environment, 48, 5461–5471.

    Article  Google Scholar 

  • Coyle, C., Creamer, R. E., Schulte, R. P. O., Sullivan, L. O., & Jordan, P. (2016). A Functional Land Management conceptual framework under soil drainage and land use scenarios. Environmental Science & Policy, 56, 39–48.

    Article  Google Scholar 

  • Creamer, R., O’Sullivan, L. (2018). The soils of Ireland. World Soils Book Series. Springer International Publishing AG. https://doi.org/10.1007/978-3-319-71189-8.

  • DAFM (2019). Minimum specification for farm roadways, S199. https://www.teagasc.ie/news--events/daily/environment/new-rules-for-farm-roadways-in-2021-.php. Accessed Feb 2021.

  • Dairy N. Z. (2019). Efficient tracks. Online resource. https://www.dairynz.co.nz/milking/milking-efficiently/cow-flow/track-and-yard/efficient-tracks/. Accessed Feb 2021.

  • Daly, K., Jeffrey, D., & Tunney, H. (2001). The effect of soil type on phosphorus sorption capacity and desorption dynamics in Irish grassland soils. Soil Use and Management, 17(1), 12–20.

  • Daly, K., Styles, D., Lalor, S., & Wall, D. P. (2015). Phosphorus sorption, supply potential and availability in soils with contrasting parent material and soil chemical properties. European Journal of Soil Science, 66, 792–801.

    Article  CAS  Google Scholar 

  • DGVLR, Dirt Gravel and Low Volume Roads, Center for Dirt and gravel roads studies, Penn State University, USA. Technical Bulletins (2019). Accessed on 13.02.20 at https://www.dirtandgravel.psu.edu/general-resources/technical-bulletins.

  • Dollinger, J., Dagès, C., Bailly, J.-S., Lagacherie, P., & Voltz, M. (2015). Managing ditches for agroecological engineering of landscape. A review. Agronomy for Sustainable Development, 35(3), 999–1020.

    Article  CAS  Google Scholar 

  • Doody, D., Cross, P., Withers, P., Cassidy, R., Augustenborg, C., Pullin, A., Carton, O., Crosse, S. (2019). EPA Research Report (2013-W-DS-13). Ag impact project: a systematic and participatory review of research on the impact of agriculture on aquatic ecosystems in Ireland. Report NO 194. www.epa.ie

  • Duke, G. D., Kienzle, S. W., Johnson, D. L., Byrne, J. M. (2003). Improving overland flow routing by incorporating ancillary road data into Digital Elevation Models. Journal of Spatial Hydrology, 3(2), Fall 2003.

  • Easton, Z. M., Gerard-Marchant, P., Walter, M. T., Petrovic, A. M., & Steenhuis, T. S. (2007). Identifying dissolved phosphorus source areas and predicting transport from an urban watershed using distributed hydrologic modeling. Water Resources Research, 43(11).

  • Easton, Z. M., Walter, M. T., & Steenhuis, T. S. (2008). Combined monitoring and modeling indicate the most effective agricultural best management practices. Journal of Environmental Quality, 37(5), 1798–1809.

    Article  CAS  Google Scholar 

  • Endreny, T. A., & Wood, E. F. (2003). Watershed weighting of export coefficients to map critical phosphorus loading areas. Journal of the American Water Resources Association, 39, 165–181.

    Article  Google Scholar 

  • Ezzati, G., Healy, M. G., Christianson, L., Feyereisen, G. W., Thorton, S., Daly, K., & Fenton, O. (2019). Developing and validating a decision support tool for media selection to mitigate drainage waters. Ecological Engineering, X2.

  • Ezzati, G., Fenton, O., Healy, M. G., Christianson, L., Feyereisen, G., Thornton, S., Chen, Q., Fan, B., Ding, J., & Daly, K. (2020). Impact of phosphorus inputs on the source-sink dynamics of sediment along an agricultural ditch network. Journal of Environmental Management, 257(109988).

  • Fenton, O., Richards, K. G., Kirwan, L., Khalil, M. I., & Healy, M. G. (2009). Factors affecting nitrate distribution in shallow groundwater under a beef farm in. South Eastern Ireland Journal of Environmental Management, 90(10), 3135–3146.

  • Fenton, O., Healy, M. G., Brennan, F. P., Thornton, S. F., Lanigan, G. J., & Ibrahim, T. G. (2016). Holistic evaluation of field-scale denitrifying bioreactors as a basis to improve environmental sustainability. Journal of Environmental Quality, 4, 788–795.

    Article  Google Scholar 

  • Fitzsimons, V. P., & Misstear, B. D. R. (2006). Estimating groundwater recharge through tills: a sensitivity analysis of soil moisture budgets and till properties in Ireland. Hydrogeology Journal, 14(4), 548–561.

  • Galloway, B. M., Schiller, R. E., Rose, J. G. (1971). The effects of rainfall intensity, pavement cross slope, surface texture, and drainage length on pavement water depths. Research Report 138-5. Texas Transport Institute, Texas A&M University, College Station, Texas. Accessed on 13.02.20 at https://static.tti.tamu.edu/tti.tamu.edu/documents/138-5.pdf.

  • Goeller, B. C., Febria, C. M., McKergow, L. A., Harding, J. S., Matheson, F. E., Tanner, C. C., & McIntosh, A. R. (2020). Combining tools from edge-of-field to in-stream to attenuate reactive nitrogen along small agricultural waterways. Water, 12, 383.

    Article  CAS  Google Scholar 

  • Gonzalez Jimenez, J. L., Healy, M. G., Roberts, W. M., & Daly, K. (2018). Contrasting yield responses to phosphorus applications on mineral and organic soils from extensively managed grasslands: Implications for P management in high ecological status catchments. Journal of Plant Nutrition and Soil Science, 1–9.

  • González Jiménez, J. L., Healy, M. G., & Daly, K. (2019). Effects of fertiliser on phosphorus pools in soils with contrasting organic matter content: a fractionation and path analysis study. Geoderma, 338, 128–135.

    Article  Google Scholar 

  • Grayson, R. B., Haydon, S. R., Jayasuriya, M. D. A., & Finlayson, B. L. (1993). Water quality in mountain ash forests – separating the impacts of roads from those of logging operations. Journal of Hydrology, 150(2-4), 459–480.

    Article  CAS  Google Scholar 

  • Haygarth, P. M., Condron, L. M., Heathwaite, A. L., Turner, B. L., & Harris, G. P. (2005). The phosphorus transfer continuum: linking source to impact with an interdisciplinary and multi-scaled approach. Science of the Total Environment, 344, 5–14.

    Article  CAS  Google Scholar 

  • Healy, M. G., Ryan, P. C., Fenton, O., Peyton, D. P., Wall, D. P., & Morrison, L. (2016). Bioaccumulation of metals in ryegrass (Lolium perenne L.) following the application of lime stabilised, thermally dried and anaerobically digested sewage sludge. Ecotoxicology and Environmental Safety, 130, 303–309.

  • Hill, W., & Pickering, C. M. (2009). Evaluation of impacts and methods for the assessment of walking tracks in protected areas. Cooperative Research Centre for Sustainable Tourism.

  • Hively, W. D., Gérard-Marchant, P., & Steenhuis, T. S. (2006). Distributed hydrological modeling of total dissolved phosphorus transport in an agricultural landscape, part II: dissolved phosphorus transport. Hydrology and Earth System Sciences Discussions, 10, 263–276.

    Article  CAS  Google Scholar 

  • Hirata, M., Higashiyama, M., & Hasegawa, N. (2011). Diurnal pattern of excretion in grazing cattle. Livestock Science, 142, 23–32.

  • Ibrahim, T. G., Goutelle, A., Healy, M. G., Brennan, R., Tuohy, P., Humphreys, J., Lanigan, G., Brechignac, J., & Fenton, O. (2015). Mixed agricultural pollutant mitigation using woodchip/pea gravel and woodchip/zeolite permeable reactive interceptors Water. Air, & Soil Pollution, 226(3), 1–11.

  • Jennings, E., Allott, N., Lenihan, D., Quirke, B., Taylor, D., & Twomey, H. (2013). Drivers of long-term trends and seasonal changes in total phosphorus loads to a mesotrophic lake in the west of Ireland. Marine and Freshwater Research, 64, 413–422.

    Article  CAS  Google Scholar 

  • Kadlec, R. H. (2016). Large constructed wetlands for phosphorus control: a review. Water, 8(6), 243. https://doi.org/10.3390/w8060243.

  • Kavanagh, I., Burchill, W., Healy, M. G., Fenton, O., Krol, D. J., & Lanigan, G. J. (2019). Mitigation of ammonia and greenhouse gas emissions from stored cattle slurry using acidifiers and chemical amendments. Journal of Cleaner Production, 237, 117822.

  • Kröger, R., Holland, M. M., Moore, M. T., & Cooper, C. M. (2007). Hydrological variability and agricultural drainage ditch inorganic nitrogen reduction capacity. Journal of Environmental Quality, 36, 1646–1652.

    Article  Google Scholar 

  • Kröger, R., Holland, M. M., Moore, M. T., & Cooper, C. M. (2008). Agricultural drainage ditches mitigate phosphorus loads as a function of hydrological variability. Journal of Environmental Quality, 37, 107–113.

    Article  Google Scholar 

  • Kröger, R., Dunne, E. J., Noval, J., King, K. W., Mclellan, E., Smith, D. R., Strock, J., Boomer, K., Tomer, M. D., & Now, G. B. (2012). Downstream approaches to phosphorus management in agricultural landscapes: regional applicability and use. Science of the Total Environment, 442, 263–274.

    Article  Google Scholar 

  • Kurz, I., Coxon, C. E., Tunney, H., & Ryan, D. (2005). Effects of grassland management practices and environmental conditions on nutrient concentrations in overland flow. Journal of Hydrology, 304, 35–50.

  • Lane, P. N., & Sheridan, G. J. (2002). Impact of an unsealed forest road stream crossing: water quality and sediment sources. Hydrological Processes, 16, 2599–2612.

    Article  Google Scholar 

  • Laurance, W. F., Goosem, M., & Laurence, S. G. (2009). Impacts of roads and linear clearings on tropical forests. Trends in Ecology and Evolution, 24, 659–669.

    Article  Google Scholar 

  • LEAF. (2010). SUDS – Sustainable Drainage Systems to explore the effectiveness of different pathway options in slowing down the flow of surface run-off and trapping sediment from different farm and field locations. https://archive.leafuk.org/eblock/services/resources.ashx/000/557/755/LEAF_EA_SuDS_report_final2.pdf

  • Ledgard, S. F., Penno, J. W., & Sprosen, M. S. (1999). Nitrogen inputs and losses from clover/grass pastures grazed by dairy cows, as affected by nitrogen fertilizer application. The Journal of Agricultural Science, 132, 215–225.

    Article  Google Scholar 

  • Liljaniemi, P., Vuori, K.-M., Tossavainen, T., Kotanen, J., Haapanen, M., Lepistö, A., & Kenttämies, K. (2003). Effectiveness of constructed overland flow areas in decreasing diffuse pollution from forest drainages. Environmental Management, 32, 602–613.

    Article  Google Scholar 

  • Liu, T., Bruins, R. J., & Herberling, M. T. (2018). Factors influencing farmers’ adoption of best management practices: a review and synthesis. Sustain, 10, 432.

    Article  Google Scholar 

  • Lucci, G. M., McDowell, R. W., & Condron, L. M. (2010). Potential phosphorus and sediment loads from sources within a dairy farmed catchment. Soil Use and Management, 26, 44–52.

    Article  Google Scholar 

  • Lucci, G. M., McDowell, R. W., & Condron, L. M. (2012). Phosphorus source areas in a dairy catchment in Otago, New Zealand. Soil Research, 50, 145–156.

    Article  CAS  Google Scholar 

  • McDowell, R. W., Daly, K., & Fenton, O. (2020). Mitigation of phosphorus, sediment and Escherichia coli losses in runoff from a dairy farm roadway. Irish Journal of Agricultural and Food Research. https://doi.org/10.15212/ijafr-2020-0117.

  • McLaren, T., Guppy, C., Tighe, M., Moody, P., & Bell, M. (2014). Dilute acid extraction is a 505 useful indicator of the supply of slowly available phosphorus in Vertisols. Soil Science 506. Society of America Journal, 78, 139–146.

    Article  Google Scholar 

  • McLaughlin, M. J., McBeath, T. M., Smernik, R., Stacey, S. P., Babasola, A., & Guppy, C. (2011). The chemical nature of P accumulation in agricultural soils – implications for fertiliser management and design: an Australian perspective. Plant and Soil, 349, 69–87.

    Article  CAS  Google Scholar 

  • Mellander, P.-E., Jordan, P., Melland, A. R., Murphy, P. N. C., Wall, D. P., Mechan, S., Meehan, R., Kelly, C., Shine, O., & Shortle, G. (2013). Quantification of phosphorus transport from a Karstic Agricultural Watershed to emerging spring water. Environmental Science & Technology, 47, 6111–6119.

    Article  CAS  Google Scholar 

  • Ministry for the Environment. (n.d.). A guide to sustainable water and riparian management in rural New Zealand. Accessed at https://www.mfe.govt.nz/sites/default/files/managing-waterways-jul01.pdf on 13th January 2021.

  • Misstear, B., Brown, L., & Daly, D. (2009). A methodology for making initial estimates of groundwater recharge from groundwater vulnerability mapping. Hydrogeology Journal, 17(2), 275–285.

  • Monaghan, R. M., & Smith, L. C. (2012). Contaminant losses in overland flow from dairy farm laneways in southern New Zealand. Agriculture, Ecosystems and Environment, 159, 170–175.

    Article  Google Scholar 

  • Moore, M. T., Kröger, R., Locke, M. A., Cullum, R. F., Steinriede Jr., R. W., Testa III, S., Lizotte Jr., R. E., Bryant, C. T., & Cooper, C. M. (2010). Nutrient mitigation capacity in Mississippi Delta, USA drainage ditches. Environmental Pollution, 158, 175–184.

    Article  CAS  Google Scholar 

  • Moloney, T., Fenton, O., & Daly, K. (2020). Ranking connectivity risk for phosphorus loss along agricultural drainage ditches. Science of the Total Environment, 703, 13455.

  • Murnane, J. G., Brennan, R. B., Healy, M. G., & Fenton, O. (2015). Use of zeolite with alum and polyaluminum chloride amendments to mitigate runoff losses of phosphorus, nitrogen, and suspended solids from agricultural wastes applied to grassed soils. Journal of Environmental Quality, 44(5), 1674–1683.

    Article  CAS  Google Scholar 

  • Murnane, J. G., Fenton, O., & Healy, M. G. (2018). Impacts of zeolite, alum and polyaluminum chloride amendments mixed with agricultural wastes on soil column leachate, and CO2 and CH4 emissions. Journal of Environmental Management, 206, 398–408.

    Article  CAS  Google Scholar 

  • Nguyen, L., & Sukias, J. (2002). Phosphorus fractions and retention in drainage ditch sediments receiving surface runoff and subsurface drainage from agricultural catchments in the North Island, New Zealand. Agriculture, Ecosystems and Environment, 92, 49–69.

    Article  Google Scholar 

  • Nguyen, L., Nagels, J., Sukias, J. P. S. (2002). Faecal contamination and the removal of Escherichia coli (E. coli) in drainage ditches. In: Currie LD, Loganathan P ed. Dairy farm soil management. Fertilizer and Lime Research Centre, Massey University, Palmerston North. Occasional Report No. 15, pp. 261–266

  • O'Flynn, C. J., Fenton, O., & Healy, M. G. (2012). Evaluation of amendments to control phosphorus losses in runoff from pig slurry applications to land. Clean: Soil, Air, Water, 40, 164–170.

    CAS  Google Scholar 

  • Oudshoorn, F. W., Kristensen, T., & Nadimi, N. S. (2008). Dairy cow defecation and urination frequency and spatial distribution in relation to time-limited grazing. Livestock Science, 113, 62–73.

    Article  Google Scholar 

  • Outram, F. N., Cooper, R. J., Sunnenberg, G., Hiscock, K. M., & Lovett, A. A. (2016). Antecedent conditions, hydrological connectivity and anthropogenic inputs: factors affecting nitrate and phosphorus transfers to agricultural headwater streams. Science of the Total Environment, 545-546, 184–199.

    Article  CAS  Google Scholar 

  • Orr, R. J., Griffith, B. A., Champion, R. A., & Cook, J. E. (2012). Defaecation and urination behaviour in beef cattle grazing semi-natural grassland. Applied Animal Behavious Science, 139, 18–25.

  • Penn, C. J., Bowen, J. M. (2017). Chapter 3: phosphorus removal structures as a short-term solution for the problem of dissolve phosphorus transport to surface waters. In: Design and Construction of Phosphorus Removal Structures for Improving Water Quality. Springer International.

  • Penn, C. J., Bryant, R. B., Kleinman, P. J. A., & Allen, A. L. (2007). Removing dissolved phosphorus from drainage ditch water with phosphorus sorbing materials. Journal of Soil and Water Conservation, 62, 269–276.

    Google Scholar 

  • Penn, P., Chagas, I., Klimeski, A., & Lyngsie, G. (2017). A review of phosphorus removal structures: how to assess and compare their performance. Water, 9, 583.

    Article  Google Scholar 

  • Powell, J. M., MacLeod, M., Vellinga, T. V., Opio, C., Falcucci, A., Tempio, G., Steinfeld, H., & Gerber, P. (2013). Feed–milk–manure nitrogen relationships in global dairy production systems. Livestock Science, 152(2), 261–272.

    Article  Google Scholar 

  • Pratt, J. P., Macintosh, K. A., Brown, L., Burkitt, L. (2020). Effect of riparian widths for reducing contaminants from dairy-farm laneways. Farmed Landscape Research Centre Workshop, Massey University, University of New Zealand.

  • Roberts, W. M., Gonzalez-Jimenez, J. L., Doody, D. G., Jordan, P., & Daly, K. (2017). Assessing the risk of phosphorus transfer to high ecological status rivers: integration of nutrient management with soil geochemical and hydrological conditions. Science of the Total Environment, 589, 25–35.

    Article  CAS  Google Scholar 

  • Sandström, S., Futter, M. N., Kyllmar, K., Bishop, K., O’Connell, D. W., & Djodjic, F. (2020). Particulate phosphorus and suspended solids losses from small agricultural catchments: links to stream and catchment characteristics. Science of the Total Environment, 711, 134616.

    Article  Google Scholar 

  • Scheetz, B. E., Bloser, S. M. (2009). Environmentally sensitive maintenance on agricultural roads to reduce nutrient and sediment pollution in the Kishacoquillas watershed. U.S. Department of Agriculture. Conservation innovation grant program. The Pennsylvania State University. Accessed on 13.02.20 at https://www.dirtandgravel.psu.edu/sites/default/files/Center/Research/CIG_Final_Report.pdf

  • Schipper, L. A., Robertson, W. D., Gold, A. J., Jaynes, D. B., & Cameron, S. C. (2010). Denitrifying bioreactors-an approach for reducing nitrate loads to receiving waters. Ecological Engineering, 36, 1532–1543.

    Article  Google Scholar 

  • Schulte, R. P. O., Creamer, R. E., Donnellan, T., Farrelly, N., Fealy, R., O’Donoghue, C., & O’hUallachain, D. (2014). Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environmental Science & Policy, 38, 45–58.

  • Sharpley, A. N., Bergström, L., Aronsson, H., Bechmann, M., Bolster, Börling, K., Djodjic, F., Jarvie, H. P., Schoumans, O. F., Stamm, C., Tonderski, K. S., Ulén, B., Uusitalo, R., & Withers, P. J. A. (2015). Future agriculture with minimized phosphorus losses to waters: Research needs and direction. AMBIO, 44, 163–179.

    Article  CAS  Google Scholar 

  • Sherriff, S. C., Rowan, J. S., Melland, A. R., Jordan, P., Fenton, O., & O’hUallachain, D. O. (2015). Investigating suspended sediment dynamics in contrasting agricultural catchments using ex situ turbidity-based suspended sediment monitoring. Hydrology and Earth System Sciences, 19(8), 3349–3363.

    Article  CAS  Google Scholar 

  • Shore, M., Murphy, P. N. C., Jordan, P., Mellander, P.-E., Kelly-Quinn, M., Cushen, M., Mechan, S., Shine, O., & Melland, A. R. (2013). Evaluation of a surface hydrological connectivity index in agricultural catchments. Journal of Environmental Modelling & Software, 47, 7–15.

    Article  Google Scholar 

  • Shore, M., Jordan, P., Mellander, P.-E., Kelly-Quinn, M., & Melland, A. R. (2015a). An agricultural drainage channel classification system for phosphorus management. Agriculture, Ecosystems and Environment, 199, 207–215.

    Article  CAS  Google Scholar 

  • Shore, M., Jordan, P., Mellander, P.-E., Kelly-Quinn, M., Daly, K., Sims, J. T., Wall, D. P., & Melland, A. R. (2015b). Characterisation of agricultural drainage ditch sediments along the phosphorus transfer continuum in two contrasting headwater catchments. Journal of Soils and Sediments, 16(5), 1643–1654.

    Article  Google Scholar 

  • Smith, L. C., & McDowell, R. W. (2016). The use of alum to decrease phosphorus loss from dairy farm laneways in southern New Zealand. Soil Use and Management, 6(32), 69–71.

    Article  Google Scholar 

  • Smith, D. R., & Pappas, E. A. (2007). Effect of ditch dredging on the fate of nutrients in deep drainage ditches of the Midwestern United States. Journal of Soil and Water Conservation, 62, 252–261.

    Google Scholar 

  • Srinivasan, M. S., & McDowell, R. W. (2009). Identifying critical source areas for water quality: 1. Mapping and validating transport areas in three headwater catchments in Otago, New Zealand. Journal of Hydrology, 379, 53–67.

    Article  Google Scholar 

  • STTI. (2018). Land Incentive Scheme Handbook. Source to tap, farming for water. Interreg (Northern Ireland – Ireland – Scotland). Accessed on 13.02.20 at https://www.sourcetotap.eu/wp-content/uploads/2018/07/STT1-Land-Incentive-Scheme-Handbook-1.pdf.

  • Teagasc. 2017. Dairy Farm Infrastructure Handbook. Animal and Grassland Research and Innovation Centre, Moorepark. https://www.teagasc.ie/media/website/publications/2017/Dairy-Farm-Infrastructure-Handbook-Moorepark2017-(V3).pdf.

  • Thomas, I. A., Jordan, P., Mellander, P. E., Fenton, O., Shine, O., & hUallacháin, D. Ó. (2016a). Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution. Science of the Total Environment, 556, 276–290.

    Article  CAS  Google Scholar 

  • Thomas, I. A., Mellander, P. E., Murphy, P. N. C., Fenton, O., Shine, O., & Djodjic, F. (2016b). A sub-field scale critical source area index for legacy phosphorus management using high resolution data. Agriculture, Ecosystems & Environment, 233, 238–225.

  • Tolomio, M., & Borin, M. (2018). Water table management to save water and reduce nutrient losses from agricultural fields: 6 years of experience in North-Eastern Italy. Agricultural Water Management, 201, 1–10.

  • Tosakana, N., Van Tassel, L., Wulfhorst, J., Boll, J., Mahler, R., Brooks, E., & Kane, S. (2010). Determinants of the adoption of conservation practices by farmers in the Northwest Wheat and Range Region. Journal of Soil and Water Conservation, 65, 404–412.

    Article  Google Scholar 

  • Tuohy, P., O'Loughlin, J., Peyton, D., & Fenton, O. (2018). The performance and behavior of land drainage systems and their impact on field scale hydrology in an increasingly volatile climate. Agricultural Water Management, 210, 96–107.

  • UK Environment Agency. (n.d.). Guidance: rules for farmers and land managers to prevent water pollution. Accessed at https://www.gov.uk/guidance/rules-for-farmers-and-land-managers-to-prevent-water-pollution#prevent-erosion-manage-livestock-and-soil on 13th January 2021.

  • Villettaz Robichaud, M., de Passillé, A. M., Pellerinand, D., & Rushen, J. (2011). When and where do dairy cows defecate and urinate? Journal of Dairy Science, 94(10), 4889–4896.

    Article  CAS  Google Scholar 

  • Wall, D. P, O’Sullivan, L., Debeljak, M., Trajanov, A., Schroder, J., Bugge Henriksen, C., Creamer, R. E., Cacovean, H., Delgado, A. (2017). Key indicators and management strategies for water purification and regulation. Technical Public Report D3.2, Landmark Project www.landmark2020.eu.

  • Welch, E. W., Frederick, J., & Marc-Aurele Jr., P. E. (2001). Determinants of farmer behaviour: adoption of and compliance with best management practices for nonpoint source pollution in the Skaneateles Lake Watershed. Lake and Reservoir Management, 17(3), 233–245.

    Article  Google Scholar 

  • Wemple, B. C. (2013). Assessing the effect of unpaved roads on Lake Champlain water quality. Final Report. June 2013. Lake Champlain Basin Program and New England Interstate Water Pollution Control Commission.

  • Wemple, B. C., & Jones, J. A. (2003). Runoff production on forest roads in a steep, mountain catchment. Water Resources Research, 39(8), 1220.

    Article  Google Scholar 

  • White, S. L., Sheffield, R. E., Washburn, S. P., King, L. D., & Green, J. T. (2001). Spatial and time distribution of dairy cattle excreta in an intensive pasture system. Journal of Environmental Quality, 30, 2180–2187.

    Article  CAS  Google Scholar 

  • Woli, K. P., David, M. B., Cooke, R. A., McIsaac, G. F., & Mitchell, C. A. (2010). Nitrogen balance in and export from agricultural fields associated with controlled drainage systems and denitrifying bioreactors. Ecological Engineering, 36(11), 1558–1566. https://doi.org/10.1016/j.ecoleng.2010.04.024.

  • Woods Ballard, B., Wilson, S., Udale-Clarke, H., Illman, S., Scott, T., Ashley, R., Kellagher, R. (2015). The SuDS Manual. CIRIA C753, Griffin Court, 15 Long Lane, London, EC1A 9PN, UK. Accessed on 13.02.20 at http://www.hrwallingford.com.cn/pdfs/news/CIRIA%20report%20C753%20The%20SuDS%20Manual-v2.pdf.

  • Wu, J. S., Allan, C. J., Saunders, W. L., & Evett, J. B. (1998). Characterization and pollutant loading estimation for highway runoff. Journal of Environmental Engineering, ASCE, 124(7), 584–592.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project 5173: Roadway Runoff and Nutrient-loss Reduction was co-funded by EPA/DAFM. The authors would also like to thank those contributors for photos and to those who provided local information in Ireland, the UK and the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Fenton.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fenton, O., Tuohy, P., Daly, K. et al. A Review of On-farm Roadway Runoff Characterisation and Potential Management Options for Ireland. Water Air Soil Pollut 232, 89 (2021). https://doi.org/10.1007/s11270-021-05027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05027-0

Keywords

Navigation