Skip to main content
Log in

Photocatalytic Degradation of Congo Red Dye from Aqueous Environment Using Cobalt Ferrite Nanostructures: Development, Characterization, and Photocatalytic Performance

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Highly efficient and effective treatments of hazardous dye-based color effluents are a major problem in the industrial sector. In this research, the cobalt ferrite (CoFe2O4) catalyst was produced and used for the degradation of Congo red (CR) as a model dye from aqueous solution. For a said purpose, cobalt ferrite (CoFe2O4) nanostructures with photocatalytic degradation potential were engineered via co-precipitation method using Fe2(SO4)3, CoO2, and triethylene glycol (as a stabilizing agent). As prepared, CoFe2O4 nanostructures were further surface-functionalized with 3-APTES and tested for CR degradation. The prepared CoFe2O4 nanostructures were characterized by X-ray diffraction, Fourier transform infra-red (FT-IR), scanning electron microscopy (SEM), and Brunauer-Emmitt-Teller (BET) analysis. UV-visible absorption was used to measure the optical band gap of prepared CoFe2O4 nanostructures through Tauc plots. The as-prepared CoFe2O4 nanostructure bandgap was found to be 2.71 EV while using an acidic medium. The degradation rates of CR dye for bs-CoFe2O4, as-CoFe2O4, and fs-CoFe2O4 nanostructures at pH 9 were 84, 87, and 92%, respectively. Furthermore, the influences of various process parameters, i.e., the effect of catalyst dose, contact time, dye dose/concentration, pH effect, and effect of different acids, were checked for the prepared three types of nanostructures, i.e., bs-CoFe2O4, as-CoFe2O4, and fs-CoFe2O4. The kinetics models properly explained that the reaction of degradation following pseudo-first-order kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ali, N., Zaman, H., Bilal, M., Nazir, M. S., & Iqbal, H. M. (2019). Environmental perspectives of interfacially active and magnetically recoverable composite materials–a review. Science of the Total Environment, 670, 523–538.

    CAS  Google Scholar 

  • Bedoui, A., Ahmadi, M. F., Bensalah, N., & Gadri, A. (2009). Comparative study of Eriochrome black T treatment by BDD-anodic oxidation and Fenton process. Chemical Engineering Journal, 146(1), 98–104.

    CAS  Google Scholar 

  • Bhattacharyya, K. G., & Sharma, A. (2005). Kinetics and thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder. Dyes and Pigments, 65(1), 51–59.

    CAS  Google Scholar 

  • Bilal, M., & Asgher, M. (2015). Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase. BMC Biotechnology, 15(1), 111.

    Google Scholar 

  • Bilal, M., & Iqbal, H. M. N. (2019). Lignin peroxidase immobilization on Ca-alginate beads and its dye degradation performance in a packed bed reactor system. Biocatalysis and Agricultural Biotechnology, 20, 101205.

    Google Scholar 

  • Bilal, M., Asgher, M., Parra-Saldivar, R., Hu, H., Wang, W., Zhang, X., & Iqbal, H. M. (2017). Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants–a review. Science of the Total Environment, 576, 646–659.

    CAS  Google Scholar 

  • Bilal, M., Rasheed, T., Iqbal, H. M., Li, C., Wang, H., & Zhang, X. (2018a). Photocatalytic degradation, toxicological assessment and degradation pathway of CI reactive blue 19 dye. Chemical Engineering Research and Design, 129, 384–390.

    CAS  Google Scholar 

  • Bilal, M., Rasheed, T., Iqbal, H. M., Hu, H., Wang, W., & Zhang, X. (2018b). Toxicological assessment and UV/TiO2-based induced degradation profile of reactive black 5 dye. Environmental Management, 61(1), 171–180.

    Google Scholar 

  • Bilal, M., Rasheed, T., Zhao, Y., & Iqbal, H. M. N. (2019). Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. International Journal of Biological Macromolecules, 124, 742–749.

    CAS  Google Scholar 

  • Casbeer, E., Sharma, V. K., & Li, X. Z. (2012). Synthesis and photocatalytic activity of ferrites under visible light: a review. Separation and Purification Technology, 87, 1–14.

    CAS  Google Scholar 

  • Chen, C., Zhang, M., Guan, Q., & Li, W. (2012). Kinetics and thermodynamics studies on the adsorption of xylenol orange on to MIL-101 (Cr). Chemical Engineering Journal, 183, 60–67.

    CAS  Google Scholar 

  • Deraz, N. M., & Abd-Elkader, O. H. (2015). Fabrication and characterization of ZnFe2O4/ZnO based anticorrosion pigments. International Journal of Electrochemical Science, 10, 7103–7110.

    CAS  Google Scholar 

  • Goya, G. F., & Leite, E. R. (2003). Ferrimagnetism and spin canting of Zn 57 Fe2O4 nano particles embedded in ZnO matrix. Journal of Physics: Condensed Matter, 15(4), 641.

    CAS  Google Scholar 

  • Guo, X., Liu, J., & Guo, G. (2017). Photocatalytic removal of dye and reaction mechanism analysis over Y2O3 composite nanomaterials. In MATEC Web of Conferences. EDP Sciences, 88, 02003.

  • Hosni, N., Zehani, K., Bartoli, T., Bessais, L., & Maghraoui-Meherzi, H. (2017). Semi-hard magnetic properties of nanoparticles of cobalt ferrite synthesized by the coprecipitation process. Journal of Alloys and Compounds, 694, 1295–1301.

    CAS  Google Scholar 

  • Huang, H. Y., Yang, R. T., Chinn, D., & Munson, C. L. (2003). Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Industrial & Engineering Chemistry Research, 42(12), 2427–2433.

    CAS  Google Scholar 

  • Khurshid, R., Ali, F., Qureshi, M. T., Afzal, A., & Ali, Z. (2019). Polyol-mediated coprecipitation and aminosilane grafting of superparamagnetic, spinel ZnFe2O4 nanoparticles for room-temperature ethanol sensors. Journal of the Electrochemical Society, 166(4), B258–B265.

    CAS  Google Scholar 

  • Liu, L., Chan, K. C., Sun, M., & Chen, Q. (2007). The effect of the addition of Ta on the structure, crystallization and mechanical properties of Zr–Cu–Ni–Al–Ta bulk metallic glasses. Materials Science and Engineering A, 445, 697–706.

    Google Scholar 

  • Liu, L., Bilal, M., Duan, X., & Iqbal, H. M. (2019). Mitigation of environmental pollution by genetically engineered bacteria—current challenges and future perspectives. Science of the Total Environment, 667, 444–454.

    CAS  Google Scholar 

  • Lopez, F. A., Lopez-D, A., & de Vidales, J. L. M. (1998). Simple synthesis, structural and optical properties of cobalt ferrite nanoparticles. The European Physical Journal Plus, 134, 296.

    Google Scholar 

  • Mahboubeh, H., Fatemeh, Z., Zahra, J. R., Ali, A., & Zohreh, A. (2014). Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. Journal of Magnetism and Magnetic Materials, 371, 43–48.

    Google Scholar 

  • Mahdavi, M., Ahmad, M., Haron, M., Namvar, F., Nadi, B., Rahman, M., & Amin, J. (2013). Synthesis, surface modification and characterization of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 18(7), 7533–7548.

    CAS  Google Scholar 

  • Mahmoodi, N. M., Arami, M., Limaee, N. Y., & Tabrizi, N. S. (2006). Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. Journal of Colloid and Interface Science, 295(1), 159–164.

    CAS  Google Scholar 

  • Murcia, M. D., Gómez, M., Gómez, E., Gómez, J. L., & Christofi, N. (2011). Photodegradation of Congo red using XeBr, KrCl and Cl2 barrier discharge excilamps: a kinetics study. Desalination, 281, 364–371.

    CAS  Google Scholar 

  • Murphy, A. B. (2007). Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Solar Energy Materials and Solar Cells, 91(14), 1326–1337.

    CAS  Google Scholar 

  • Priyadharsini, P., Pradeep, A., Rao, P. S., & Chandrasekaran, G. (2009). Structural, spectroscopic and magnetic study of nanocrystalline Ni–Zn ferrites. Materials Chemistry and Physics, 116(1), 207–213.

    CAS  Google Scholar 

  • Rahimi, R., Tadjarodi, A., Rabbani, M., Kerdari, H., & Imani, M. (2013). Preparation, characterization and photocatalytic properties of Ba-Cd-Sr-Ti doped Fe3O4 nanohollow spheres on removal of Congo red under visible-light irradiation. Journal of Superconductivity and Novel Magnetism, 26(1), 219–228.

    CAS  Google Scholar 

  • Rasheed, T., Bilal, M., Iqbal, H. M., Hu, H., & Zhang, X. (2017). Reaction mechanism and degradation pathway of rhodamine 6G by photocatalytic treatment. Water, Air, & Soil Pollution, 228(8), 291.

    Google Scholar 

  • Rasheed, T., Nabeel, F., Adeel, M., Rizwan, K., Bilal, M., & Iqbal, H. M. (2019a). Carbon nanotubes-based cues: a pathway to future sensing and detection of hazardous pollutants. Journal of Molecular Liquids, 111425.

  • Rasheed, T., Adeel, M., Nabeel, F., Bilal, M., & Iqbal, H. M. (2019b). TiO2/SiO2 decorated carbon nanostructured materials as a multifunctional platform for emerging pollutants removal. Science of the Total Environment, 688, 299–311.

    CAS  Google Scholar 

  • Rasheed, T., Nabeel, F., Bilal, M., & Iqbal, H. M. N. (2019c). Biogenic synthesis and characterization of cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and methyl orange dyes. Biocatalysis and Agricultural Biotechnology, 19, 101154.

    Google Scholar 

  • Rishikeshi, S. N., Joshi, S. S., Temgire, M. K., & Bellare, J. R. (2013). Chain length dependence of polyol synthesis of zinc ferrite nanoparticles: why is diethylene glycol so different? Dalton Transactions, 42(15), 5430–5438.

    CAS  Google Scholar 

  • Ruttink, P. J., Dekker, L. J., Luider, T. M., & Burgers, P. C. (2012). Complexation of divalent metal ions with diols in the presence of anion auxiliary ligands: zinc-induced oxidation of ethylene glycol to glycolaldehyde by consecutive hydride ion and proton shifts. Journal of Mass Spectrometry, 47(7), 869–874.

    CAS  Google Scholar 

  • Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2003). Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells, 77(1), 65–82.

    CAS  Google Scholar 

  • Salazar-López, M., Rostro-Alanis, M. D. J., Castillo-Zacarías, C., Parra-Guardado, A. L., Hernández-Luna, C., Iqbal, H. M. N., & Parra-Saldivar, R. (2017). Induced degradation of anthraquinone-based dye by laccase produced from Pycnoporus sanguineus (CS43). Water, Air, & Soil Pollution, 228(12), –469.

  • Samiey, B., Cheng, C. H., & Wu, J. (2014). Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review. Materials, 7(2), 673–726.

    CAS  Google Scholar 

  • Saquib, M., & Muneer, M. (2002). Semiconductor mediated photocatalysed degradation of an anthraquinone dye, Remazol Brilliant Blue R under sunlight and artificial light source. Dyes and Pigments, 53(3), 237–249.

    CAS  Google Scholar 

  • Shu, J., Wang, Z., Huang, Y., Huang, N., Ren, C., & Zhang, W. (2015). Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles: kinetics, isotherms, thermodynamics and mechanism analysis. Journal of Alloys and Compounds, 633, 338–346.

    CAS  Google Scholar 

  • Skrabalak, S. E., Wiley, B. J., Kim, M., Formo, E. V., & Xia, Y. (2008). On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Letters, 8(7), 2077–2081.

    CAS  Google Scholar 

  • Soylak, M., Narin, I., Divrikli, U., Saracoglu, S., Elci, L., & Dogan, M. (2004). Preconcentration-separation of heavy metal ions in environmental samples by membrane filtration-atomic absorption spectrometry combination. Analytical Letters, 37(4), 767–780.

    CAS  Google Scholar 

  • Ullah, I., Ali, F., Ali, Z., Humayun, M., & wahab, Z. U. (2018). Glycol stabilized magnetic nanoparticles for photocatalytic degradation of xylenol orange. Materials Research Express, 5, 055509–055522.

    Google Scholar 

  • Vijayaraghavan, T., Suriyaraj, S. P., Selvakumar, R., Venkateswaran, R., & Ashok, A. (2016). Rapid and efficient visible light photocatalytic dye degradation using AFe2O4 (A= Ba, Ca and Sr) complex oxides. Materials Science and Engineering B, 210, 43–50.

    CAS  Google Scholar 

  • Wang, X., Schwartz, V., Clark, J. C., Ma, X., Overbury, S. H., Xu, X., & Song, C. (2009). Infrared study of CO2 sorption over “molecular basket” sorbent consisting of polyethylenimine-modified mesoporous molecular sieve. The Journal of Physical Chemistry C, 113(17), 7260–7268.

    CAS  Google Scholar 

  • Zaharieva, K. L., Milenova, K. I., Rives, V., Trujillano, R., Cherkezova-Zheleva, Z. P., Eliyas, A. E., & Mitov, I. G. (2015). Mixed cobalt-copper ferrite-type materials: synthesis and photocatalytic efficiency in degradation of Reactive Black 5 dye under UV-light irradiation. Bulgarian Chemical Communications, 47, 105–111.

    Google Scholar 

  • Zhang, G., Li, C., Cheng, F., & Chen, J. (2007). ZnFe2O4 tubes: synthesis and application to gas sensors with high sensitivity and low-energy consumption. Sensors and Actuators B: Chemical, 120(2), 403–410.

    CAS  Google Scholar 

  • Zhou, Z., Zhang, Y., Wang, Z., Wei, W., Tang, W., Shi, J., & Xiong, R. (2008). Electronic structure studies of the spinel CoFe2O4 by X-ray photoelectron spectroscopy. Applied Surface Science, 254(21), 6972–6975.

    CAS  Google Scholar 

  • Zhu, H., Jiang, R., Xiao, L., Chang, Y., Guan, Y., Li, X., & Zeng, G. (2009). Photocatalytic decolorization and degradation of Congo red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. Journal of Hazardous Materials, 169(1–3), 933–940.

    CAS  Google Scholar 

Download references

Funding

All listed authors are grateful to their representative departments and universities for the financial support and analytical services used in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nisar Ali or Hafiz M. N. Iqbal.

Ethics declarations

Conflict of Interest

The authors report no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N., Said, A., Ali, F. et al. Photocatalytic Degradation of Congo Red Dye from Aqueous Environment Using Cobalt Ferrite Nanostructures: Development, Characterization, and Photocatalytic Performance. Water Air Soil Pollut 231, 50 (2020). https://doi.org/10.1007/s11270-020-4410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-4410-8

Keywords

Navigation