Skip to main content
Log in

Role of Zeolite-Supported Nanoscale Zero-Valent Iron in Selenate Removal

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Nanoscale zero-valent iron–supported zeolite Na-P1 (Z-NZVI) was synthesized and technologically promoted for selenate (Se6+) removal from water. NZVI, Z, and Z-NZVI were characterized using XRD, FTIR, high-resolution transmission electron microscopy with energy-dispersive X-ray spectroscopy (HR-TEM-EDS), and XANES techniques. Morphology and visualizing analysis using HR-TEM-EDS demonstrated that NZVI was uniformly distributed on the surfaces of Z in the Z-NZVI sample, which apparently reduced the aggregation of NZVI and would thereby increase the reduction activity. The Z-NZVI demonstrated higher efficiency for Se6+ removal since the high synergistic effect of Se6+ reduction and sorption by Z-NZVI. XANES analysis indicated that Z-NZVI could enhance Se6+ reduction into and selenium (Se0), while the adsorption phenomenon emerged on the Z-NZVI surface. Z performed as a supporter of the insoluble products, improving the reduction activity of NZVI. The high capacity of Z-NZVI provides promising technology for the removal of selenium from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akiho, H., Yamamoto, T., Tochihara, Y., Noda, N., Noguchi, S., & Ito, S. (2012). Speciation and oxidation reaction analysis of selenium in aqueous solution using X-ray absorption spectroscopy for management of trace element in FGD liquor. Fuel, 102, 156–161.

    Article  CAS  Google Scholar 

  • Bajaj, M., Eiche, E., Neumann, T., Winter, J., & Gallert, C. (2011). Hazardous concentrations of selenium in soil and groundwater in north-West India. Journal of Hazardous Materials, 189(3), 640–646.

    Article  CAS  Google Scholar 

  • Blissett, R. S., & Rowson, N. A. (2012). Review article A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1–23.

    Article  CAS  Google Scholar 

  • Canafoglia, M. E., Lick, I. D., Ponzi, E. N., & Botto, I. L. (2009). Natural materials modified with transition metals of the cobalt group: feasibility in catalysis. The Journal of the Argentine Chemical Society, 97, 58–68.

    CAS  Google Scholar 

  • Chansiriwat, W., Tanangteerapong, D., & Wantala, K. (2016). Synthesis of zeolite from coal fly ash by hydrothermal method without adding alumina and silica sources: effect of aging temperature and time. Sains Malaysiana, 45(11), 1723–1731.

    CAS  Google Scholar 

  • Chen, H., Cao, Y., Wei, E., Gong, T., & Xian, Q. (2016). Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water. Chemosphere, 146, 32–39.

    Article  CAS  Google Scholar 

  • Dong, H., Chen, Y., Sheng, G., Li, J., Cao, J., Li, Z., & Li, Y. (2016). The roles of a pillared bentonite on enhancing se(VI) removal by ZVI and the influence of co-existing solutes in groundwater. Journal of Hazardous Materials, 304, 306–312.

    Article  CAS  Google Scholar 

  • Dong, T., Luo, H., Wang, Y., Hu, B., & Chen, H. (2011). Stabilization of Fe-Pd bimetallic nanoparticles with sodium carboxymethyl cellulose for catalytic reduction of para-nitrochlorobenzene in water. Desalination, 271, 11–19.

    Article  CAS  Google Scholar 

  • Fu, F., Lu, J., Cheng, Z., & Tang, B. (2016). Removal of selenite by zero-valent iron combined with ultrasound: Se(IV) concentration changes, Se(VI) generation, and reaction mechanism. Ultrasonics Sonochemistry, 29, 328–336.

    Article  CAS  Google Scholar 

  • Fu, R., Yang, Y., Xu, Z., Zhang, X., Guo, X., & Bi, D. (2015). The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere, 138, 726–734.

    Article  CAS  Google Scholar 

  • Fu, Y., Wang, J., Liu, Q., & Zeng, H. (2014). Water-dispersible magnetic nanoparticle-graphene oxide composites for selenium removal. Carbon, 77, 710–721.

    Article  CAS  Google Scholar 

  • Geng, B., Jin, Z., Li, T., & Qi, X. (2009). Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere, 75(6), 825–830.

    Article  CAS  Google Scholar 

  • Gibson, B. D., Blowes, D. W., Lindsay, M. B. J., & Ptacek, C. J. (2012). Mechanistic investigations of se(VI) treatment in anoxic groundwater using granular iron and organic carbon: an EXAFS study. Journal of Hazardous Materials, 241–242, 92–100.

    Article  CAS  Google Scholar 

  • Gonzalez, C. M., Hernandez, J., Parsons, J. G., & Gardea-Torresdey, J. L. (2010). A study of the removal of selenite and selenate from aqueous solutions using a magnetic iron/manganese oxide nanomaterial and ICP-MS. Microchemical Journal, 96(2), 324–329.

    Article  CAS  Google Scholar 

  • Hansen, H. K., Peña, S. F., Gutiérrez, C., Lazo, A., Lazo, P., & Ottosen, L. M. (2019). Selenium removal from petroleum refinery wastewater using an electrocoagulation technique. Journal of Hazardous Materials, 364, 78–81.

    Article  CAS  Google Scholar 

  • Hu, C., Chen, Q., Chen, G., Liu, H., & Qu, J. (2015). Removal of se(IV) and se(VI) from drinking water by coagulation. Separation and Purification Technology, 142, 65–70.

    Article  CAS  Google Scholar 

  • Izidoro, J. D. C., Fungaro, D. A., Dos Santos, F. S., & Wang, S. (2012). Characteristics of Brazilian coal fly ashes and their synthesized zeolites. Fuel Processing Technology, 97, 38–44.

    Article  CAS  Google Scholar 

  • Jegadeesan, G. B., Mondal, K., & Lalvani, S. B. (2015). Adsorption of se (IV) and se (VI) using copper-impregnated activated carbon and Fly ashextracted char carbon. Water, Air, and Soil Pollution, 226(8), 226–234

  • Jiemvarangkul, P., Zhang, W. X., & Lien, H. L. (2011). Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chemical Engineering Journal, 170, 482–491.

    Article  CAS  Google Scholar 

  • Khamdahsag, P., Khemthong, P., Sitthisuwannakul, K., Grisdanurak, N., Wutikhun, T., Rungnim, C., et al. (2018). Insights into binding mechanism of silver/titanium dioxide composites for enhanced elemental mercury capture. Materials Chemistry and Physics, 215, 1–10.

    Article  CAS  Google Scholar 

  • Kim, H., Hong, H., Jung, J., Kim, S., & Yang, J. (2010). Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. Journal of Hazardous Materials journal, 176, 1038–1043.

    Article  CAS  Google Scholar 

  • Kim, S. A., Kamala-Kannan, S., Lee, K. J., Park, Y. J., Shea, P. J., Lee, W. H., et al. (2013). Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite. Chemical Engineering Journal, 217, 54–60.

    Article  CAS  Google Scholar 

  • Kong, X., Han, Z., Zhang, W., Song, L., & Li, H. (2016). Synthesis of zeolite-supported microscale zero-valent iron for the removal of Cr6+ and Cd2+ from aqueous solution. Journal of Environmental Management, 169, 84–90.

    Article  CAS  Google Scholar 

  • Kunecki, P., Panek, R., Koteja, A., & Franus, W. (2018). Influence of the reaction time on the crystal structure of Na-P1 zeolite obtained from coal fly ash microspheres. Microporous and Mesoporous Materials, 266, 102–108.

    Article  CAS  Google Scholar 

  • Lee, Y. R., Kim, J., & Ahn, W. S. (2013). Synthesis of metal-organic frameworks: a mini review. Korean Journal of Chemical Engineering, 30(9), 1667–1680.

    Article  CAS  Google Scholar 

  • Li, Y., Peng, T., Man, W., Ju, L., Zheng, F., Zhang, M., & Guo, M. (2016). Hydrothermal synthesis of mixtures of NaA zeolite and sodalite from Ti-bearing electric arc furnace slag. RSC Advances, 6, 8358–8366.

    Article  CAS  Google Scholar 

  • Li, Y., Li, J., & Zhang, Y. (2012). Mechanism insights into enhanced Cr(VI) removal using nanoscale zerovalent iron supported on the pillared bentonite by macroscopic and spectroscopic studies. Journal of Hazardous Materials, 227–228, 211–218.

    Article  CAS  Google Scholar 

  • Li, Z., Wang, L., Meng, J., Liu, X., Xu, J., Wang, F., & Brookes, P. (2018). Zeolite-supported nanoscale zero-valent iron: new findings on simultaneous adsorption of cd(II), Pb(II), and as(III) in aqueous solution and soil. Journal of Hazardous Materials, 344, 1–11.

    Article  CAS  Google Scholar 

  • Liang, L., Guan, X., Huang, Y., Ma, J., Sun, X., Qiao, J., & Zhou, G. (2015). Efficient selenate removal by zero-valent iron in the presence of weak magnetic field. Separation and Purification Technology, 156, 1064–1072.

    Article  CAS  Google Scholar 

  • Liang, L., Yang, W., Guan, X., Li, J., Xu, Z., Wu, J., Huang, Y., & Zhang, X. (2013). Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron. Water Research, 47(15), 5846–5855.

    Article  CAS  Google Scholar 

  • Ling, L., Pan, B., & Zhang, W. X. (2015). Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of se(IV). Water Research, 71(34), 274–281.

    Article  CAS  Google Scholar 

  • Liu, A., Liu, J., Pan, B., & Zhang, W. X. (2014a). Formation of lepidocrocite (γ-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water. RSC Advances, 4, 57377–57382.

    Article  CAS  Google Scholar 

  • Liu, A., Liu, J., & Zhang, W. X. (2015). Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water. Chemosphere, 119, 1068–1074.

    Article  CAS  Google Scholar 

  • Liu, F., Yang, J. H., Zuo, J., Ma, D., Gan, L., Xie, B., et al. (2014b). Graphene-supported nanoscale zero-valent iron: removal of phosphorus from aqueous solution and mechanistic study. Journal of Environmental Sciences (China), 26(8), 1751–1762.

    Article  CAS  Google Scholar 

  • Ma, X., Zhang, Z., & Wang, A. (2016). The transition of fly ash-based geopolymer gels into ordered structures and the effect on the compressive strength. Construction and Building Materials, 104, 25–33.

    Article  CAS  Google Scholar 

  • Minelli, M., Papa, E., Medri, V., Miccio, F., Benito, P., Doghieri, F., & Landi, E. (2018). Characterization of novel geopolymer – zeolite composites as solid adsorbents for CO2 capture. Chemical Engineering Journal, 341, 505–515.

    Article  CAS  Google Scholar 

  • Mondal, M. K. (2009). Removal of Pb(II) ions from aqueous solution using activated tea waste: adsorption on a fixed-bed column. Journal of Environmental Management, 90(11), 3266–3271.

    Article  CAS  Google Scholar 

  • Oleksenko, L. P., Yatsimirsky, V. K., Telbiz, G. M., & Lutsenko, L. V. (2004). Adsorption and catalytic properties of co/ZSM-5 zeolite catalysts for CO oxidation. Adsorption Science and Technology, 22(7), 535–541.

    Article  CAS  Google Scholar 

  • Ravel, B., & Newville, M. (2005). ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT. Synchrotron Radiation, 12, 537–541.

    Article  CAS  Google Scholar 

  • Sarret, G., Avoscan, L., Carrière, M., Collins, R., Geoffroy, N., Carrot, F., et al. (2005). Chemical forms of selenium in the metal-resistant bacterium. Applied and Environmental Microbiology, 71(5), 2331–2337.

    Article  CAS  Google Scholar 

  • Sheng, G., Hu, J., Li, H., Li, J., & Huang, Y. (2016). Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study. Chemosphere, 148, 227–232.

    Article  CAS  Google Scholar 

  • Shirazi, E., Torabian, A., & Nabi-Bidhendi, G. (2013). Carbamazepine removal from groundwater: effectiveness of the TiO2/UV, nanoparticulate zero-valent iron, and Fenton (NZVI/H2O2) processes. Clean - Soil, Air, Water, 41(11), 1062–1072.

    Article  CAS  Google Scholar 

  • Staicu, L. C., Morin-Crini, N., & Crini, G. (2017). Desulfurization: critical step towards enhanced selenium removal from industrial effluents. Chemosphere, 172, 111–119.

    Article  CAS  Google Scholar 

  • Suazo-Hernández, J., Sepúlveda, P., Manquián-Cerda, K., Ramírez-Tagle, R., Rubio, M. A., Bolan, N., et al. (2019). Synthesis and characterization of zeolite-based composites functionalized with nanoscale zero-valent iron for removing arsenic in the presence of selenium from water. Journal of Hazardous Materials, 373, 810–819.

    Article  CAS  Google Scholar 

  • Subramani, A., Cryer, E., Liu, L., Lehman, S., Ning, R. Y., & Jacangelo, J. G. (2012). Impact of intermediate concentrate softening on feed water recovery of reverse osmosis process during treatment of mining contaminated groundwater. Separation and Purification Technology, 88, 138–145.

    Article  CAS  Google Scholar 

  • Sun, Y. P., Li, X. Q., Zhang, W. X., & Wang, H. P. (2007). A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 308, 60–66.

    Article  CAS  Google Scholar 

  • Tan, L. C., Nancharaiah, Y. V., Hullebusch, E. D. V., & Lens, P. N. L. (2016). Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnology Advances, 34(5), 886–907.

    Article  CAS  Google Scholar 

  • Thuadaij, P., & Nuntiya, A. (2012). Effect of the SiO2/Al2O3 ratio on the synthesis of Na-x zeolite from Mae Moh fly ash. ScienceAsia, 38(3), 295–300.

    Article  CAS  Google Scholar 

  • Tian, N., Zhou, Z., Tian, X., Yang, C., & Li, Y. (2017). Superior capability of MgAl2O4 for selenite removal from contaminated groundwater during its reconstruction of layered double hydroxides. Separation and Purification Technology, 176, 66–72.

    Article  CAS  Google Scholar 

  • Wan Ngah, W. S., Teong, L. C., Toh, R. H., & Hanafiah, M. A. K. M. (2013). Comparative study on adsorption and desorption of Cu(II) ions by three types of chitosan-zeolite composites. Chemical Engineering Journal, 223, 231–238.

    Article  CAS  Google Scholar 

  • Wang, P., Menzies, N. W., Lombi, E., McKenna, B. A., de Jonge, M. D., Paterson, D. J., et al. (2013). In situ speciation and distribution of toxic selenium in hydrated roots of cowpea. Plant Physiology, 163(1), 407–418.

    Article  CAS  Google Scholar 

  • Wdowin, M., Franus, W., & Panek, R. (2012). Preliminary results of usage possibilities of carbonate and zeolitic sorbents in CO2 capture. Fresenius Environmental Bulletin, 21(12), 3726–3734.

    CAS  Google Scholar 

  • Xi, Y., Sun, Z., Hreid, T., Ayoko, G. A., & Frost, R. L. (2014). Bisphenol A degradation enhanced by air bubbles via advanced oxidation using in situ generated ferrous ions from nano zero-valent iron/palygorskite composite materials. Chemical Engineering Journal, 247, 66–74.

    Article  CAS  Google Scholar 

  • Yamani, J. S., Lounsbury, A. W., & Zimmerman, J. B. (2014). Adsorption of selenite and selenate by nanocrystalline aluminum oxide, neat and impregnated in chitosan beads. Water Research, 50, 373–381.

    Article  CAS  Google Scholar 

  • Yao, G., Lei, J., Zhang, X., Sun, Z., Zheng, S., & Komarneni, S. (2018). Mechanism of zeolite X crystallization from diatomite. Materials Research Bulletin, 107, 132–138.

    Article  CAS  Google Scholar 

  • Zhang, G., Song, A., Duan, Y., & Zheng, S. (2018). Enhanced photocatalytic activity of TiO2/zeolite composite for abatement of pollutants. Microporous and Mesoporous Materials, 255, 61–68.

    Article  CAS  Google Scholar 

  • Zhang, X., Lin, S., Chen, Z., Megharaj, M., & Naidu, R. (2011). Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: Reactivity, characterization and mechanism. Water Research, 45(11), 3481–3488.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Electricity Generating Authority of Thailand (EGAT), Faculty of Engineering, Khon Kaen University, Research and Technology transfer affairs of Khon Kaen University, The Thailand Research Fund (MRG6180196), and Office of the Higher Education Commission. The authors also would like to acknowledge Synchrotron Light Research Institute (Public Organization).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Visanu Tanboonchuy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phanthasri, J., Grisdanurak, N., Khamdahsag, P. et al. Role of Zeolite-Supported Nanoscale Zero-Valent Iron in Selenate Removal. Water Air Soil Pollut 231, 199 (2020). https://doi.org/10.1007/s11270-020-04587-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04587-x

Keywords

Navigation