Skip to main content

Advertisement

Log in

The Effects of the Commercially Formulated Neonicotinoids Imidacloprid and Thiamethoxam on the Survival of Infectious Stages of Two Trematode Parasites

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Neonicotinoids are a popular class of systemic insecticides registered for use in over 120 countries. Recent global water surveys have found neonicotinoid insecticides in waterbodies adjacent to agricultural fields. The presence of neonicotinoids in surface waters raises the concern of the potential risk of exposure to non-target aquatic species, with relevance for both free-living and parasitic taxa. The susceptibility of aquatic free-living parasitic stages to the lethal effects of neonicotinoids may influence the prevalence and intensity of host infection, and their availability as prey for a variety of organisms (e.g., fish, invertebrates). We examined the effects of two commonly used neonicotinoids on the survival of free-living infectious stages (cercariae) from two trematode (flatworm) species (Diplostomum sp. and Haematoloechus sp.). We found that exposure to commercially formulated imidacloprid and thiamethoxam, individually and in a binary mixture, had no significant effect on cercarial survival for either species at environmentally relevant concentrations. Further study is required to understand if the ability of the surviving cercariae to infect the next host in their life cycle is compromised in the presence of neonicotinoids, or if host defenses are compromised, as changes in parasite infectivity or host susceptibility could influence infection dynamics and have community- and ecosystem-level implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson, J. C., Dubetz, C., & Palace, V. P. (2015). Neonicotinoids in the Canadian aquatic environment: A literature review on current use products with a focus on fate, exposure, and biological effects. Science of the Total Environment, 505, 409–422.

    CAS  Google Scholar 

  • Blaustein, A. R., Han, B. A., Relyea, R. A., Johnson, P., Buck, J. C., Gervasi, S. S., & Kats, L. B. (2011). The complexity of amphibian population declines: Understanding the role of cofactors in driving amphibian losses. Annals of the New York Academy of Sciences, 1223, 108–119.

    Google Scholar 

  • Bolek, M. G., & Janovy Jr., J. (2007). Evolutionary avenues for, and constraints on the transmission of frog lung flukes (Haemotoloechus spp.) in dragonfly second intermediate hosts. The Journal of Parasitology, 93, 593–607.

    Google Scholar 

  • Bonmatin, J. M., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D. P., Krupke, C., et al. (2015). Environmental fate and exposure; neonicotinoids and fipronil. Environmental Science and Pollution Research, 22, 35–67.

    CAS  Google Scholar 

  • Bridges, C. M., & Semlitsch, R. D. (2000). Variation in pesticide tolerance of tadpoles among and within species of Ranidae and patterns of amphibian decline. Conservation Biology, 14, 1490–1499.

    Google Scholar 

  • Buckingham, S. D., Lapied, B., Corronc, H. L. E., Grolleau, F., & Satelle, D. B. (1997). Imidacloprid actions on insect neuronal acetylcholine receptors. Journal of Environmental Biology, 200, 2685–2692.

    CAS  Google Scholar 

  • CCME. (2007). Canadian Water Quality Guidelines: Imidacloprid. Scientific supporting document. Winnipeg: Canadian Council of Ministers of the Environment.

    Google Scholar 

  • Chappell, L. H. (1995). The biology of diplostomatid eyeflukes of fishes. Journal of Helminthology, 69, 97–101.

    CAS  Google Scholar 

  • Clarke, A. H. (1981). The freshwater molluscs of Canada. Ottawa: National Museums of Canada.

    Google Scholar 

  • Coors, A., & Meester, L. D. (2008). Synergistic, antagonistic and additive effects of multiple stressors: Predation threat, parasitism and pesticide exposure in Daphnia magna. Journal of Applied Ecology, 45, 1820–1828.

    Google Scholar 

  • Coors, A., Decaestecker, E., Jansen, M., & Meester, L. D. (2008). Pesticide exposure strongly enhances parasite virulence in an invertebrate host model. Oikos, 117, 1840–1846.

    Google Scholar 

  • Cothran, R. D., Brown, J. M., & Relyea, R. A. (2013). Proximity to agriculture is correlated with pesticide tolerance: Evidence for the evolution of amphibian resistance to modern pesticides. Evolutionary Applications, 6, 832–841.

    CAS  Google Scholar 

  • Crawley, M. J. (2007). The R book. Chischerter: John Wiley & Sons Ltd..

    Google Scholar 

  • Deneer, J. W. (2000). Toxicity of mixtures of pesticides in aquatic systems. Pest Management Science, 56, 516–520.

    CAS  Google Scholar 

  • Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F., & Jetz, W. (2008). Homage to Linnaeus: How many parasites? How many hosts? Proceedings of the National Academy of Sciences, 105, 11482–11489.

    CAS  Google Scholar 

  • Erasmus, D. A. (1972). The biology of trematodes. London: Edward Arnold (Publishers) Ltd.

    Google Scholar 

  • Fried, B., Pane, P. L., & Reddy, A. (1997). Experimental infection of Rana pipiens tadpoles with Echinostoma trivolvis cercariae. Parasitology Research, 83, 666–669.

    CAS  Google Scholar 

  • Hua, J., Buss, N., Kim, J., Orlofske, S. A., & Hoverman, J. T. (2016). Population-specific toxicity of six insecticides to the trematode Echinoparyphium sp. Parasitology, 143, 542–550.

    CAS  Google Scholar 

  • IBM Corp. (2016). IBM SPSS Statistics for Windows, Version 24.0. Armonk: IBM Corp.

    Google Scholar 

  • Jeschke, P., Nauren, R., Schindler, M., & Elbert, A. (2011). Overview of the status and global strategy for neonicotinoids. Journal of Agricultural and Food Chemistry, 59, 2897–2908.

    CAS  Google Scholar 

  • Karvonen, A., Paukku, S., Valtonen, E. T., & Hudson, P. J. (2003). Transmission, infectivity, and survival of Diplostomum spathaceum cercariae. Parasitology, 127, 217–224. https://doi.org/10.1017/S0031182003003561.

    Article  CAS  Google Scholar 

  • King, K. C., McLaughlin, J. D., Gendron, A. D., Pauli, B. D., Giroux, I., Rondeau, B., et al. (2007). Impacts of agriculture on the parasite communities of northern leopard frogs (Rana pipiens) in southern Quebec, Canada. Parasitology, 134(14), 2063–2080.

    CAS  Google Scholar 

  • King, K. C., Mclaughlin, J. D., Boily, M., & Marcogliese, D. J. (2010). Effects of agricultural landscape and pesticides on parasitism in native bullfrogs. Biological Conservation, 143, 302–310.

    Google Scholar 

  • Koprivnikar, J., & Redfern, J. C. (2012). Agricultural effects on amphibian parasitism: Importance of general habitat perturbations and parasite life cycles. Journal of Wildlife Diseases, 48(4), 925–936.

    Google Scholar 

  • Koprivnikar, J., Forbes, M. R., & Baker, R. L. (2006). Effects of atrazine on cercarial longevity, activity, and infectivity. The Journal of Parasitology, 92, 306–311.

    CAS  Google Scholar 

  • Koprivnikar, J., Forbes, M. R., & Baker, R. L. (2007). Contaminant effects on host-parasite interactions: Atrazine, frogs, and trematodes. Environmental Toxicology and Chemistry, 26, 2166–2170.

    CAS  Google Scholar 

  • Koprivnikar, J., Marcogliese, D. J., Rohr, J. R., Orlofske, S. A., Raffel, T. R., & Johnson, P. T. (2012). Macroparasite infections of amphibians: What can they tell us? EcoHealth, 9, 342–360.

    Google Scholar 

  • Lafferty, K. D., Allesina, S., Arim, M., Briggs, C. J., De Leo, G., Dobson, A. P., et al. (2008). Parasites in food webs: The ultimate missing links. Ecology Letters, 11, 533–546.

    Google Scholar 

  • Loos, R., Gawlik, B. M., Locoro, G., Rimaviviute, E., Contini, S., & Bidoglio, G. (2009). EU-wide survey of polar organic persistent pollutants in European River waters. Environmental Pollution, 157(2), 561–568.

    CAS  Google Scholar 

  • Maloney, E. M., Morrissey, C. A., Headley, J. V., Peru, K. M., & Liber, K. (2017). Cumulative toxicity of neonicotinoid insecticide mixtures to Chironomus dilutus under acute exposure scenarios. Environmental Toxicology and Chemistry, 36, 3091–3101.

    CAS  Google Scholar 

  • Maloney, E. M., Morrissey, C. A., Headley, J. V., Peru, K. M., & Liber, K. (2018). Can chronic exposure to imidacloprid, clothianidin, and thiamethoxam mixtures exert greater than additive toxicity in Chironomus dilutus? Ecotoxicology and Environmental Safety, 156, 354–365.

    CAS  Google Scholar 

  • Mesnage, R., Defarge, N., Spiroux de Vendômois, J., & Séralini, G.-E. (2014). Major pesticides are more toxic to human cells than their declared active principles. BioMed Research International. https://doi.org/10.1155/2014/179691.

  • Morley, N. J. (2012). Cercariae (Platyhelminthes: Trematoda) as neglected components of zooplankton communities in freshwater habitats. Hydrobiologia, 69, 7–19.

    Google Scholar 

  • Morley, N. J., Crane, M., & Lewis, J. W. (2001). Toxicity of cadmium and zinc to Diplostomum spathaceum (Trematoda: Diplostomidae) cercarial survival. International Journal for Parasitology, 31, 1211–1217.

    CAS  Google Scholar 

  • Morrissey, C. A., Mineau, P., Devries, J. H., Sanchez-Bayo, F., Liess, M., Cavallaro, M. C., & Liber, K. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environment International, 74, 291–303.

    CAS  Google Scholar 

  • Olivier, L. J. (1966). Infectivity of Schistosoma mansoni cercariae. The American Journal of Tropical Medicine and Hygiene, 15, 882–885.

    CAS  Google Scholar 

  • Olsen, O.W. (1986). Animal parasites: Their life cycles and ecology. New York, NY: Dover Publications.

  • Orlofske, S. A., Jadin, R., & Johnson, P. T. (2015). It’s a predator–eat–parasite world: How characteristics of predator, parasite and environment affect consumption. Oecologia, 178, 537–547.

    Google Scholar 

  • Pavlaki, M. D., Pereira, R., Loureiro, S., & Soares, A. M. V. M. (2011). Ecotoxicology and environmental safety effects of binary mixtures on the life traits of Daphnia magna. Ecotoxicology and Environmental Safety, 74, 99–110.

    CAS  Google Scholar 

  • Pietrock, M., & Goater, C. P. (2005). Infectivity of Ornithodiplostomom pytchocheilus and Posthodiplostomum minimum (Trematoda: Diplostomidae) cercariae following exposure to cadmium. The Journal of Parasitology, 91, 854–856.

    CAS  Google Scholar 

  • Preston, D. L., Orlofske, S. A., Lambden, J. P., & Johnson, P. T. (2013). Biomass and productivity of trematode parasites in pond ecosystems. The Journal of Animal Ecology, 82, 509–517.

    Google Scholar 

  • Prosser, R. S., de Solla, S. R., Holman, E. A. M., Osborne, R., Robinson, S. A., Bartlett, A. J., et al. (2016). Sensitivity of the early-life stages of freshwater mollusks to neonicotinoid and butenolide insecticides. Environmental Pollution, 218, 428–435.

    CAS  Google Scholar 

  • Robinson, S. A., Richardson, S. D., Dalton, R. L., Maisonneuve, F., Trudeau, V. L., Pauli, B. D., & Lee-Jenkins, S. S. Y. (2017). Sublethal effects on wood frogs chronically exposed to environmentally relevant concentrations of two neonicotinoid insecticides. Environmental Toxicology and Chemistry, 36, 1101–1109.

    CAS  Google Scholar 

  • Robinson, S. A., Gavel, M. J., Richardson, S. D., Chlebak, R. J., Milotic, D., Koprivnikar, J., & Forbes, M. (2019). Sub-chronic exposure to a neonicotinoid does not affect susceptibility of larval leopard frogs to infection by trematode parasites, via either depressed cercarial performance or host immunity. Parasitology Research. https://doi.org/10.1007/s00436-019-06385-9.

  • Rosenkranz, M., Lagrue, C., Poulin, R., & Selbach, C. (2018). Small snails, high productivity? Larval output of parasites from an abundant host. Freshwater Biology, 63, 1602–1609.

    Google Scholar 

  • Santos, M. J., Karvonen, A., Pedro, J. C., Faltýková, A., Seppälä, O., & Valtonen, E. T. (2007). Qualitative and quantitative behavioural traits in a community of furcocercariae trematodes: Tools for species separation? The Journal of Parasitology, 93(6), 1319–1323.

    CAS  Google Scholar 

  • Schell, S. C. (1970). How to know trematodes. Iowa: W.C. Brown Company Publishers.

    Google Scholar 

  • Schell, S. C. (1985). Handbook of trematodes of North America north of Mexico. Idaho: University Press of Idaho.

    Google Scholar 

  • Schotthoefer, A. M., Labak, K. M., & Beasley, V. R. (2007). Ribeiroia ondatrae cercariae are consumed by aquatic invertebrate predators. The Journal of Parasitology, 93, 1240–1243.

    Google Scholar 

  • Shariff, M., Richards, R. H., & Sommerville, C. (1980). The histopathology of acute and chronic infections of rainbow trout Salmo gairdneri with eye flukes, Diplostomum spp. Journal of Fish Diseases, 3, 455–465.

    Google Scholar 

  • Simon-Delso, N., Amaral-Rogers, V., Belzunces, L. P., et al. (2015). Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environmental Science and Pollution Research, 22, 5–34.

    CAS  Google Scholar 

  • Stuart, S. N., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A. S. L., Fischman, D. L., & Waller, R. W. (2004). Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783–1786.

    CAS  Google Scholar 

  • Szuroczki, D., & Richardson, J. M. L. (2009). The role of trematode parasites in larval anuran communities: An aquatic ecologist’s guide to the major players. Oecologia, 161, 371–385.

    Google Scholar 

  • Takács, E., Klátyik, S., Môrtl, M., Rácz, G., Kovács, K., et al. (2017). Effects of neonicotinoid insecticide formulations and their components on Daphnia magna–The role of active ingredients and co-formulants. International Journal of Environmental Anlytical Chemistry, 97(9), 885–900.

    Google Scholar 

  • Toledo, R., Munoz-Antoli, C., Pérez, M., & Esteban, J. G. (1999). Survival and infectivity of Hypoderaeum conoideum and Euparyphium albuferensis cercariae under laboratory conditions. Journal of Helminthology, 73, 177–182.

    CAS  Google Scholar 

  • Tomizawa, M., & Casida, J. E. (2003). Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annual Review of Entomology, 48, 339–364.

    CAS  Google Scholar 

  • Tomizawa, M., & Yamamoto, I. (1992). Binding of nicotinoids and the related compounds to the insect nicotinic acetylcholine receptor. Journal of Pesticide Science, 17, 231–236.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank France Maisonneuve and Eric Pelletier from Environment and Climate Change Canada’s Laboratory Services at the National Wildlife Research Centre for the neonicotinoid chemical analyses.

Funding

Funding was provided by the Environment and Climate Change Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacey A. Robinson.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(XLSX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohonczy, J.L.M., Koprivnikar, J., Waltho, N. et al. The Effects of the Commercially Formulated Neonicotinoids Imidacloprid and Thiamethoxam on the Survival of Infectious Stages of Two Trematode Parasites. Water Air Soil Pollut 231, 125 (2020). https://doi.org/10.1007/s11270-020-04510-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04510-4

Keywords

Navigation