Skip to main content

Advertisement

Log in

Investigating the Effect of Medicago sativa L. and Trifolium pratense L. Root Exudates on PAHs Bioremediation in an Aged-Contaminated Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAH) are persistent organic compounds of major concern that accumulate in the environment, especially soils, and require remediation. Researches to develop bioremediation and phytoremediation (alternative eco-friendly technologies) are being conducted. First, a bioaccessibility measurement protocol was adapted to a brownfield soil using Tenax® beads in order to compare PAHs bioaccessibility in soil samples. PAHs desorption kinetics were established, described by a site distribution model, and a common extraction time was calculated (48 h). Second, the role of two Fabaceae (Medicago sativa L. or Trifolium pratense L.) root exudates in enhancing PAHs bioaccessibility and biodegradation in the studied soil was evaluated during microcosms experiments (28 °C). The CO2 emissions were significantly higher in presence of T. pratense exudates; the dehydrogenase activities showed improvements of the soil microbial activity in presence of two types of root exudates compared to untreated soil samples; the PAHs residual contents decreased more in untreated samples than in the presence of T. pratense exudates; and M. sativa exudates lowered PAHs bioaccessibility but not residual contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AFNOR XP U44-163 (n.d.) Amendements organiques et supports de culture - Caractérisation de la matière organique par la minéralisation potentielle du carbone et de l’azote.

  • Alagić, S., Maluckov, B. S., & Radojičić, V. B. (2015). How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review. Clean Technologies and Environmental Policy, 17(3), 597–614.

    Article  Google Scholar 

  • Alegbeleye, O. O., Opeolu, B. O., & Jackson, V. A. (2017). Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environmental Management, 60(4), 758–783.

    Article  Google Scholar 

  • Alves, W. S., Manoel, E. A., Santos, N. S., Nunes, R. O., Domiciano, G. S., & Soares, M. R. (2018). Phytoremediation of polycyclic aromatic hydrocarbons (PAH) by cv. Crioula: A Brazilian alfalfa cultivar. International Journal of Phytoremediation, 20(8), 747–755.

    Article  CAS  Google Scholar 

  • Barnier, C., Ouvrard, S., Robin, C., & Morel, J. L. (2014). Desorption kinetics of PAHs from aged industrial soils for availability assessment. Sci Total Environ., 470–471, 639–645.

    Article  Google Scholar 

  • Cébron, A., Louvel, B., Faure, P., France-lanord, C., Chen, Y., Murrell, J. C., & Leyval, C. (2011). Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environmental Microbiology, 13(3), 722–736.

    Article  Google Scholar 

  • Connaughton, D. F., Stedinger, J. R., Lion, L. W., & Shuler, M. L. (1993). Description of time-varying desorption kinetics: release of naphthalene from contaminated soils. Environmental Science & Technology, 27(12), 2397–2403.

    Article  CAS  Google Scholar 

  • Cornelissen, G., Van Noort, P. C. M., & Govers, H. A. J. (1997). Desorption kinetics of chlorobenzenes, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls: Sediment extraction with Tenax® and effects of contact time and solute hydrophobicity. Environmental Toxicology and Chemistry, 16(7), 1351–1357.

    Article  CAS  Google Scholar 

  • Das, S., & Varma, A. (2011). Roles of enzymes in maintaining soil health. In G. Shukla & A. Varma (Eds.), Soil Enzymology (Vol. 22 – Soil Biology, 1st ed., pp. 25–42). Berlin: Springer-Verlag.

    Google Scholar 

  • Davin, M., Starren, A., Deleu, M., Lognay, G., Colinet, G., & Fauconnier, M.-L. (2018). Could saponins be used to enhance bioremediation of polycyclic aromatic hydrocarbons in aged-contaminated soils? Chemosphere., 194, 414–421.

    Article  CAS  Google Scholar 

  • Ehlers, L. J., & Luthy, R. G. (2003). Contaminant bioavailability in improving risk assessment and remediation rests on better understanding bioavailability. Environmental Science & Technology, 37, 295–302.

    Article  Google Scholar 

  • Hall, J., Soole, K., & Bentham, R. (2011). Hydrocarbon phytoremediation in the family Fabaceae-a review. International Journal of Phytoremediation, 13(4), 317–332.

    Article  CAS  Google Scholar 

  • Hamdi, H., Benzarti, S., Aoyama, I., & Jedidi, N. (2012). Rehabilitation of degraded soils containing aged PAHs based on phytoremediation with alfalfa (Medicago sativa L.). International Biodeterioration and Biodegradation, 67, 40–47.

    Article  CAS  Google Scholar 

  • Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 169(1–3), 1–15.

    Article  CAS  Google Scholar 

  • Hoagland, D. R. & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station, Circular-347.

  • Institut National de l’Environnement Industriel et des Risques (INERIS). (2005). Hydrocarbures Aromatiques Polycyliques - Guide méthodologique - Acquisition des données d’entrée des modèles analytiques ou numériques de transferts dans les sols et les eaux souterraines. 53(9):1689–1699. doi:https://doi.org/10.1017/CBO9781107415324.004.

  • ISO 11465:1993 cor 1994. (n.d.). Soil quality - Determination of dry matter and water content on a mass basis - Gravimetric method.

  • ISO 13877:1998. (n.d.). Soil quality - determination of polynuclear aromatic hydrocarbons - Method using high -performance liquid chromatography.

  • Johnsen, A. R., Wick, L. Y., & Harms, H. (2005). Principles of microbial PAH-degradation in soil. Environmental Pollution, 133, 71–84.

    Article  CAS  Google Scholar 

  • Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773–795.

    Article  Google Scholar 

  • Kobayashi, T., Kaminaga, H., Navarro, R. R., & Iimura, Y. (2012). Application of aqueous saponin on the remediation of polycyclic aromatic hydrocarbons-contaminated soil. Journal of Environmental Science and Health. Part A Toxic/Hazardous Substances and Environmental Engineering, 47, 1138–1145.

    CAS  Google Scholar 

  • Kregiel, D., Berlowska, J., Witonska, I., Antolak, H., Proestos, C., Babic, M., Babic, L., & Zhang, B. (2017). Saponin-based, biological-active surfactants from plants. In R. Najjar (Ed.), Application and Characterization of Surfactants. IntechOpen. https://doi.org/10.5772/65591.

    Google Scholar 

  • Laha, S., Tansel, B., & Ussawarujikulchai, A. (2009). Surfactant-soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: A review. Journal of Environmental Management, 90, 95–100.

    Article  CAS  Google Scholar 

  • Louvel, B. (2010). Etude en microcosmes de l’effet du ray-gras et de ses exsudats racinaire sur la dissipation des HAP et les communautés bactériennes dégradantes. Cours Léopold, Nancy, France: Université de Lorraine.

    Google Scholar 

  • Martin, B. C., George, S. J., Price, C. A., Ryan, M. H., & Tibbett, M. (2014). The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions. The Science of the Total Environment, 472, 642–653.

    Article  CAS  Google Scholar 

  • Oleszek, W., & Bialy, Z. (2006). Chromatographic determination of plant saponins-An update (2002-2005). Journal of Chromatography. A, 1112, 78–91.

    Article  CAS  Google Scholar 

  • Ouvrard, S., Chenot, E. D., Masfaraud, J. F., & Schwartz, C. (2013). Long-term assessment of natural attenuation: Statistical approach on soils with aged PAH contamination. Biodegradation., 24(4), 539–548.

    Article  CAS  Google Scholar 

  • Ouvrard, S., Leglize, P., & Morel, J. L. (2014). PAH Phytoremediation: rhizodegradation or rhizoattenuation? International Journal of Phytoremediation, 16(1), 46–61.

    Article  CAS  Google Scholar 

  • Prague, M., Diakite, A., Commenges, D. (2012). Package ’marqLevAlg’ - Algorithme de Levenberg-Marquardt en R : Une alternative à ’optimx’ pour des problèmes de minimisation. 1ères Rencontres R, Bordeaux, France. <hal-00717566>

  • Richardson, S. D., & Aitken, M. D. (2011). Desorption and bioavailability of polycyclic aromatic hydrocarbons in contaminated soil subjected to long-term in situ biostimulation. Environ Toxicol. Chem., 30(12), 2674–2681.

    CAS  Google Scholar 

  • Semple, K. T., Morriss, A. W. J., & Paton, G. I. (2003). Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. European Journal of Soil Science, 54, 809–818.

    Article  CAS  Google Scholar 

  • Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A., & Harms, H. (2004). Peer reviewed: defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environmental Science & Technology, 38(12), 228A–231A.

    Article  CAS  Google Scholar 

  • Shaw, L., & Burns, R. (2005). Soil microbial activity. In J. Bloem, D. W. Hopkins, & A. Benedetti (Eds.), Microbiological methods for assessing soil quality. Cambridge: CABI Publishing.

    Google Scholar 

  • Uroz, S., Courty, P. E., & Oger, P. (2019). Plant symbionts are engineers of the plant-associates microbiome. Trends in Plant Science, 24(10), 905–916.

    Article  CAS  Google Scholar 

  • Vincken, J. P., Heng, L., de Groot, A., & Gruppen, H. (2007). Saponins, classification and occurrence in the plant kingdom. Phytochemistry., 68, 275–297.

    Article  CAS  Google Scholar 

  • Von Lau, E., Gan, S., Ng, H. K., & Poh, P. E. (2014). Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies. Environmental Pollution, 184, 640–649.

    Article  CAS  Google Scholar 

  • Wei, S., & Pan, S. (2010). Phytoremediation for soils contaminated by phenanthrene and pyrene with multiple plant species. J. Journal of Soils and Sediments, 10, 886–894.

    Article  CAS  Google Scholar 

  • Yu, L., Duan, L., Naidu, R., & Semple, K. T. (2018). Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: putting together a bigger picture. Science of the Total Environment, 613–614, 1140–1153.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Davin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17 kb).

ESM 2

(DOCX 15 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davin, M., Starren, A., Marit, E. et al. Investigating the Effect of Medicago sativa L. and Trifolium pratense L. Root Exudates on PAHs Bioremediation in an Aged-Contaminated Soil. Water Air Soil Pollut 230, 296 (2019). https://doi.org/10.1007/s11270-019-4341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4341-4

Keywords

Navigation