Skip to main content
Log in

Optimizing Process Parameters on the Remediation Efforts for the Mass Removal of DNAPL Entrapped in a Porous Media

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the present study, the Taguchi design (TD) and the Box-Behnken design (BBD) were used to determine the effect of surfactant concentration, flushing velocity, and dense non-aqueous-phase liquid–trichloroethylene (DNAPL TCE) mass on the time of remediation for the removal of DNAPL zones, which is one of the main persistent sources of groundwater pollution. In the Taguchi approach, the performance of the response variable is measured based on the signal-to-noise (S/N) ratio whereas estimation of the full quadratic model of the parameters is allowed in the Box-Behnken design. The mean experimental values ranged between 3.97–8.31 and 4.01–9.70 for BBD and TD, respectively. Surfactant concentration was identified as the most significant parameter contributing to remediation efficiency in both design techniques. Minimum remediation effort was determined as 5.99 at obtained optimal conditions of surfactant concentration (2.5%), flushing rate (6 cm/h), and DNAPL TCE mass (365 mg) using BBD. In the case of TD, the optimal conditions were determined at a surfactant concentration of 10%, 2 cm/h flushing rate, and 365 mg DNAPL TCE mass. Analysis of variance (ANOVA) revealed a good relationship between the predicted and experimental values with 1.96% and 0.31% of the total variation that was not explained by the model using TD and BBD, respectively. Consequently, from this comparative study, it was concluded that BBD was a more suitable alternative to TD for the evaluation of remediation of DNAPL-contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akyol, N. H. (2018). Surfactant-enhanced permanganate oxidation on mass-flux reduction and mass removal relationship for pool-dominated TCE source zones in heterogeneous porous media. Water, Air, and Soil Pollution, 229, 285.

    Article  Google Scholar 

  • Akyol, N. H., & Turkkan, S. (2018). Effect of cyclodextrin-enhanced dissolution on mass removal and mass-flux reduction relationships for non-uniformly organic liquid distribution in heterogeneous porous media. Water, Air, & Soil Pollution, 229, 30.

    Article  Google Scholar 

  • Akyol, N. H., Lee, A. R., & Brusseau, M. L. (2013). Impact of enhanced-flushing reagents and organic liquid distribution on mass removal and mass discharge reduction. Water, Air, and Soil Pollution, 224, 1731.

    Article  Google Scholar 

  • Anwar, M., Rasul, M. G., & Ashwath, N. (2018). Production optimization and quality assessment of papaya (Carica papaya) biodiesel with response surface methodology. Energy Conversion and Management, 156, 103–112.

    Article  CAS  Google Scholar 

  • Arslan, A., Topkaya, E., Bingol, D., & Veli, S. (2018). Removal of anionic surfactant sodium dodecyl sulfate from aqueous solutions by O3/UV/H2O2 advanced oxidation process: process optimization with response surface methodology approach. Sustainable Environment Research, 28(2), 65–71.

    Article  CAS  Google Scholar 

  • Betiku, E., & Taiwo, A. E. (2015). Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-a-vis response surface methodology and artificial neural network. Renewable Energy, 74, 87–94.

    Article  CAS  Google Scholar 

  • Bezerra, M. A., Santelli, R. E., Oliveiraa, E. P., Villar, L. S., & Escaleiraa, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965–977.

    Article  CAS  Google Scholar 

  • Boving, T. B., & Brusseau, M. L. (2000). Solubilization and removal of residual trichloroethene from porous media: comparison of several solubilization agents. Journal of Contaminant Hydrology, 42, 51–67.

    Article  CAS  Google Scholar 

  • Carroll, K. C., & Brusseau, M. L. (2009). Dissolution, cyclodextrin-enhanced solubilization, and mass removal of an ideal multicomponent organic liquid. Journal of Contaminant Hydrology, 106(1–2), 62–72.

    Article  CAS  Google Scholar 

  • DiFilippo, E. L., & Brusseau, M. L. (2008). Relationship between mass flux reduction and source zone mass removal: analysis of field data. Journal of Contaminant Hydrology, 98(1–2), 22–35.

    Article  CAS  Google Scholar 

  • Difilippo, E. L., Carroll, K. C., & Brusseau, M. L. (2010). Impact of organic-liquid distribution and flow-field heterogeneity on reductions in mass flux. Journal of Contaminant Hydrology, 115, 14–25.

    Article  CAS  Google Scholar 

  • Esfandiar, N., Nasernejad, B., & Ebadi, T. (2014). Removal of Mn(II) from groundwater by sugarcane bagasse and activated carbon (a comparative study): application of response surface methodology (RSM). Journal of Industrial and Engineering Chemistry, 20, 3726–3736.

    Article  CAS  Google Scholar 

  • Harvell, J.R. (2012) Solubilization of multi-component immiscible liquids in homogeneous systems: a comparison of different flushing agents using a 2-D flow-cell. The University of Alabama M.S Thesis at Geological Science Department.

  • Ido, A. L., Luna, M. D. G., Capareda, S. C., Maglinao, A. L., Jr., & Nam, H. (2018). Application of central composite design in the optimization of lipid yield from Scenedesmus obliquus microalgae by ultrasonic-assisted solvent extraction. Energy, 157, 949–956.

    Article  CAS  Google Scholar 

  • Khodaei, K., Nassery, H. R., Asadi, M. M., Mohammadzadeh, H., & Mahmoodlu, M. G. (2017). BTEX biodegradation in contaminated groundwater using a novel strain (Pseudomonas sp. BTEX-30). International Biodeterioration & Biodegradation, 116, 2134–2242.

    Article  Google Scholar 

  • Kilavuz, S. A., & Akyol, N. H. (2018). TCE Kaynak Zonların Yerinde Kimyasal Yıkama ile Islahı: Tween 80 ve SDS ile Yıkama Performansı. Dokuz Eylul Üniversity-Faculty of Engineering. Journal of Science and Engineering, 20(58), 197–208.

    Google Scholar 

  • Mahal, M. K., Murao, A., Johnson, G. R., Russo, A., & Brusseau, M. L. (2010). Non-ideal behavior during complete dissolution of organic immiscible liquid: 2. Ideal porous media. Water, Air, and Soil Pollution, 213, 191–197.

    Article  CAS  Google Scholar 

  • Martínez-Villafane, J. F., & Montero-Ocampo, C. (2010). Optimisation of energy consumption in arsenic electro-removal from groundwater by the Taguchi method. Separation and Purification Technology, 70, 302–305.

    Article  Google Scholar 

  • McCray, J. E., & Brusseau, M. L. (1999). Cyclodextrin-enhanced in situ flushing of multiple-component immiscible organic liquid contamination at the field scale: analysis of dissolution behavior. Environmental Science & Technology, 33(1), 89–95.

    Article  CAS  Google Scholar 

  • Moosavi, V., Vafakhah, M., Shirmohammadi, B., & Ranjbar, M. (2014). Optimization of wavelet-ANFIS and wavelet-ANN hybrid models by Taguchi method for groundwater level forecasting. Arabian Journal for Science and Engineering, 39, 1785–1796.

    Article  Google Scholar 

  • Mutala, M., Ismail, O., Aykan, K., & Augustine, D. (2018). Effect of waste matrix for the optimization of moisture content and calorific value of bio-dried material using Taguchi DOE. Drying Technology. https://doi.org/10.1080/07373937.2018.1500484.

  • Özdemir, U., Özbay, B., Özbay, İ., & Veli, S. (2014). Application of Taguchi L32 orthogonal array design to optimize copper biosorption by using Sphagnum moss. Ecotoxicology and Environmental Safety, 107, 229–235.

    Article  Google Scholar 

  • Prasad, K. S., Rao, S., & Rao, N. (2012). Application of design of experiments to plasma arc welding process: a review. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 34, 75–81.

    Google Scholar 

  • Rosa, J. L., Robin, A., Silva, M. B., Baldan, C. A., & Peres, M. P. (2009). Electrodeposition of copper on titanium wires: Taguchi experimental design approach. Journal of Materials Processing Technology, 209, 1181–1188.

    Article  CAS  Google Scholar 

  • Russo, A., Mahal, M. K., & Brusseau, M. L. (2009). Nonideal behavior during complete dissolution of organic immiscible liquid: 1. Natural porous media. Journal of Hazardous Materials, 172, 208–213.

    Article  CAS  Google Scholar 

  • Taguchi, G., Chowdhury, S., & Wu, Y. (2005). Taguchi’s quality engineering handbook. Livonia: ASI Consulting Group, LLC.

    Google Scholar 

  • Tarley, C. R. T., Silveira, G., dos Santos, W. N. L., Matos, G. D., da Silva, E. G. P., Marcos Almeida Bezerra, M. A., Miró, M., & Ferreira, S. L. C. (2009). Chemometric tools in electroanalytical chemistry: methods for optimization based on factorial design and response surface methodology. Microchemical Journal, 92, 58–67.

    Article  CAS  Google Scholar 

  • Tick, G. R., & Rincon, E. (2009). Effect of enhanced solubilization agents on dissolution and mass flux from uniformly distributed immiscible liquid trichloroethylene (TCE) in homogeneous porous media. Water, Air, and Soil Pollution, 204, 315–332.

    Article  CAS  Google Scholar 

  • Tick, G. R., Lourenso, F., Wood, A. L., & Brusseau, M. L. (2003). Pilot-scale demonstration of cyclodextrin as a solubility-enhancement agent for the remediation of a tetrachloroethene-contaminated aquifer. Environmental Science & Technology, 37, 5829–5834.

    Article  CAS  Google Scholar 

  • Tick, G. R., Harvell, J. R., & Murgulet, D. (2015). Intermediate-scale investigation of enhanced-solubilization agents on the dissolution and removal of a multicomponent dense non-aqueous phase liquid (DNAPL) source. Water, Air, and Soil Pollution, 226, 371.

    Article  Google Scholar 

  • Wantala, K., Khongkasem, E., Khlongkarnpanich, N., Sthiannopkao, S., & Kim, K. W. (2012). Optimization of As(V) adsorption on Fe-RH-MCM-41-immobilized GAC using Box–Behnken design: effects of pH, loadings, and initial concentrations. Applied Geochemistry, 27, 1027–1034.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by TUBİTAK 115Y117. The authors would like to show their appreciation to Dr. Mutala Mohammed for his immense contribution to the optimization analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihat Hakan Akyol.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, M., Ozbay, I., Akyol, G. et al. Optimizing Process Parameters on the Remediation Efforts for the Mass Removal of DNAPL Entrapped in a Porous Media. Water Air Soil Pollut 230, 161 (2019). https://doi.org/10.1007/s11270-019-4191-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4191-0

Keywords

Navigation