Skip to main content
Log in

Removal and Oxidation of Arsenic from Aqueous Solution by Biochar Impregnated with Fe-Mn Oxides

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

We explored the preparation of Fe-Mn oxide-biochar composites and applied them for the removal of arsenic (As) from aqueous solutions. All composites exhibited high As removal efficiencies that increased with increasing pH within the investigated range (pH 3–7). According to the equation fitting for adsorption processes, F3M1BC18 (biochar:FeSO4:KMnO4, the weight ratios of 18:3:1) had the greatest sorption ability (Qm = 8.80 mg g−1), and the sorption process of F3M1BC18 was well fitted with Freundlich isotherm. In addition, FTIR and XPS analyses indicated that Fe oxides and Mn oxide particles on the outer sphere resulted in more oxidation of As(III) to As(V). The best-performing composite was characterized before and after adsorption using a range of instrumental techniques, which better identify the properties of F3M1BC18. Moreover, the physical properties, composition, and structures of the synthesized composites were investigated, and the As removal mechanism involving surface adsorption/oxidation was proposed with the high performance of Fe-Mn oxide-impregnated biochars, suggesting that these materials are well-suited for efficient water decontamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere., 99, 19–33.

    Article  CAS  Google Scholar 

  • Basu, A., Saha, D., Saha, R., Ghosh, T., & Saha, B. (2014). A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Research on Chemical Intermediates, 40(2), 447–485.

    Article  CAS  Google Scholar 

  • Borch, T., Kretzschmar, R., Kappler, A., Cappellen, P. V., Ginder-Vogel, M., Voegelin, A., & Campbell, K. (2010). Biogeochemical redox processes and their impact on contaminant dynamics. Environmental Science & Technology, 44(1), 15–23.

    Article  CAS  Google Scholar 

  • Chandra, V., Park, J., Chun, Y., Lee, J. W., Hwang, I. C., & Kim, K. S. (2010). Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 4(7), 3979–3986.

    Article  CAS  Google Scholar 

  • Chang, F., Qu, J., Liu, H., Liu, R., & Zhao, X. (2009). Fe-Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal: Preparation and evaluation. Journal of Colloid and Interface Science, 338(2), 353–358.

    Article  CAS  Google Scholar 

  • Chang, Q., Lin, W., & Ying, W. C. (2012). Impacts of amount of impregnated iron in granular activated carbon on arsenate adsorption capacities and kinetics. Water Environment Research, 84(6), 514–520.

    Article  CAS  Google Scholar 

  • Cheng, Z., Fu, F., Dionysiou, D. D., & Tang, B. (2016). Adsorption, oxidation, and reduction behavior of arsenic in the removal of aqueous As(III) by mesoporous Fe/Al bimetallic particles. Water Research, 96, 22–31.

    Article  CAS  Google Scholar 

  • Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., & Galiotis, C. (2008). Chemical oxidation of multiwalled carbon nanotubes. Carbon., 46(6), 833–840.

    Article  CAS  Google Scholar 

  • Gu, Z., Fang, J., & Deng, B. (2005). Preparation and evaluation of gac-based iron-containing adsorbents for arsenic removal. Environmental Science & Technology, 39(10), 3833–3843.

    Article  CAS  Google Scholar 

  • Gupta, K., Bhattacharya, S., Nandi, D., Dhar, A., Maity, A., Mukhopadhyay, A., et al. (2012). Arsenic(III) sorption on nanostructured cerium incorporated manganese oxide (NCMO): A physical insight into the mechanistic pathway. Journal of Colloid and Interface Science, 377(1), 269–276.

    Article  CAS  Google Scholar 

  • Hu, X., Ding, Z., Zimmerman, A. R., Wang, S., & Gao, B. (2015). Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research, 68, 206–216.

    Article  CAS  Google Scholar 

  • Jia, Y., Xu, L., Wang, X., & Demopoulos, G. P. (2007). Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochimica et Cosmochimica Acta, 71(7), 1643–1654.

    Article  CAS  Google Scholar 

  • Jiang, J., & Corma, A. (2011). Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science., 333(6046), 1131–1134.

    Article  CAS  Google Scholar 

  • Jovanović, B. M., Vukasinović-Pesić, V. L., & Rajaković, L. V. (2011). Enhanced arsenic sorption by hydrated iron(III) oxide-coated materials-mechanism and performances. Water Environment Research, 83(6), 498–506.

    Article  Google Scholar 

  • Lin, L., Qiu, W., Wang, D., Huang, Q., Song, Z., & Chau, H. W. (2017a). Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: Characterization and mechanism. Ecotoxicology and Environmental Safety, 144, 514–521.

    Article  CAS  Google Scholar 

  • Lin, L., Gao, M., Qiu, W., Wang, D., Huang, Q., & Song, Z. (2017b). Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments. Environmental Pollution, 231(1), 479–486.

    Article  CAS  Google Scholar 

  • Liu, W. J., Jiang, H., Tian, K., Ding, Y. W., & Yu, H. Q. (2013). Mesoporous carbon stabilize MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture. Environmental Science & Technology, 47(16), 9397–9403.

    Article  CAS  Google Scholar 

  • Liu, R. L., Liu, Y., Zhou, X. Y., Zhang, Z. Q., Zhang, J., & Dang, F. Q. (2014). Biomass-derived highly porous functional carbon fabricated by using a free-standing template for efficient removal of methylene blue. Bioresource Technology, 154(2), 138–147.

    Article  CAS  Google Scholar 

  • López-Ramón, V., Moreno-Castilla, C., Rivera-Utrilla, J., & Radovic, L. R. (2003). Ionic strength effects in aqueous phase adsorption of metal ions on activated carbons. Carbon, 41(10), 2020–2022.

    Article  Google Scholar 

  • Lou, Z., Cao, Z., Xu, J., Zhou, X., Zhu, J., Liu, X., Baig, S. A., Zhou, J., & Xu, X. (2017). Enhanced removal of As(III)/(V) from water by simultaneously supported and stabilized Fe-Mn binary oxide nanohybrids. Chemical Engineering Journal, 322, 710–721.

    Article  CAS  Google Scholar 

  • Lumsdon, D. G., Fraser, A. R., Russell, J. D., & Livesey, N. T. (1984). New infrared band assignments for the arsenate ion adsorbed on synthetic goethite (α-FeOOH). European Journal of Soil Science, 35(3), 381–386.

    Article  CAS  Google Scholar 

  • Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H. (1991). Effect of redox potential and ph on arsenic speciation and solubility in a contaminated soil. Environmental Science & Technology, 25(8), 1414–1419.

    Article  CAS  Google Scholar 

  • Mishra, A. K., & Ramaprabhu, S. (2010). Magnetite decorated multiwalled carbon nanotube based supercapacitor for arsenic removal and desalination of seawater. Journal of Physical Chemistry C, 114(6), 2583–2590.

    Article  CAS  Google Scholar 

  • Mohan, D., Sarswat, A., Yong, S. O., & Jr, C. U. P. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresource Technology, 160(5), 191–202.

    Article  CAS  Google Scholar 

  • Nesbitt, H. W., Canning, G. W., & Bancroft, G. M. (1998). XPS study of reductive dissolution of 7Å-birnessite by H3AsO3, with constraints on reaction mechanism. Geochimica et Cosmochimica Acta, (12), 2097–2110.

  • Ozcan, A. (2005). Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 266(1–3), 73–81.

    Article  Google Scholar 

  • Root, R. A., Dixit, S., Campbell, K. M., Jew, A. D., Hering, J. G., & O’Day, P. A. (2007). Arsenic sequestration by sorption processes in high-iron sediments. Geochimica et Cosmochimica Acta, 71(23), 5782–5803.

    Article  CAS  Google Scholar 

  • Saharan, P., Chaudhary, G. R., Mehta, S. K., & Umar, A. (2014). Removal of water contaminants by iron oxide nanomaterials. Journal of Nanoscience and Nanotechnology, 14(1), 627–643.

    Article  CAS  Google Scholar 

  • Sandhi, A., Landberg, T., & Greger, M. (2018). Effect of pH, temperature, and oxygenation on arsenic phytofiltration by aquatic moss (Warnstorfia fluitans). Journal of Environmental Chemical Engineering, 6(4), 3918–3925.

    Article  CAS  Google Scholar 

  • Scott, M. J., & Morgan, J. J. (1995). Reactions at oxide surfaces. I. Oxidation of As(III) by synthetic birnessite. Environmental Science & Technology, 29(8), 1898–1905.

    Article  CAS  Google Scholar 

  • Simeonidis, K., Gkinis, T., Tresintsi, S., Martinez-Boubeta, C., Vourlias, G., Tsiaoussis, I., Stavropoulos, G., Mitrakas, M., & Angelakeris, M. (2011). Magnetic separation of hematite-coated Fe3O4, particles used as arsenic adsorbents. Chemical Engineering Journal, 168(3), 1008–1015.

    Article  CAS  Google Scholar 

  • Tuna, A. Ö, A., ÖErcan, E., Şimşek, E.B., Beker, U., 2013. Removal of As(V) from aqueous solution by activated carbon-based hybrid adsorbents: Impact of experimental conditions. Chemical Engineering Journal 223, 116–128.

    Article  CAS  Google Scholar 

  • Wang, L., Wang, J., Wang, Z., He, C., Lyu, W., Yan, W., & Yang, L. (2018). Enhanced antimonate (Sb(V)) removal from aqueous solution by La-dopedmagnetic biochars. Chemical Engineering Journal, 354, 623–632.

    Article  CAS  Google Scholar 

  • Wongrod, S., Simon, S., Hullebusch, E. D., Lens, P., & Guibaud, G. (2019). Assessing arsenic redox state evolution in solution and solid phase during As(III) sorption onto chemically-treated sewage sludge digestate biochars. Bioresource Technology, 275, 232–238.

    Article  CAS  Google Scholar 

  • Yan, W., Ramos, M. A. V., Koel, B. E., & Zhang, W. (2017). As(III) sequestration by iron nanoparticles: Study of solid-phase redox transformations with x-ray photoelectron spectroscopy. Journal of Physical Chemistry C, 116(9), 5303–5311.

    Article  Google Scholar 

  • Yao, Y., Gao, B., Chen, J. J., & Yang, L. Y. (2013). Engineered biochar reclaiming phosphate from aqueous solutions: Mechanisms and potential application as a slow-release fertilizer. Environmental Science & Technology, 47, 8700–8708.

    Article  CAS  Google Scholar 

  • Yin, X., Liu, W., & Ni, J. (2014). Removal of coexisting Cr(VI) and 4-chlorophenol through reduction and Fenton reaction in a single system. Chemical Engineering Journal, 248(188), 89–97.

    Article  CAS  Google Scholar 

  • Yin, H. B., Kong, M., Gu, X. H., & Chen, H. (2017). Removal of arsenic from water by porous charred granulated attapulgite-supported hydrated iron oxide in bath and column modes. Journal of Cleaner Production, 166, 88–97.

    Article  CAS  Google Scholar 

  • Yu, Z., Qiu, W., Wang, F., Lei, M., Wang, D., & Song, Z. (2016). Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa, L.) cultivar. Chemosphere, 168, 341–349.

    Article  Google Scholar 

  • Yürüm, A., Kocabaş-Ataklı, Z. Ö., Sezen, M., Semiat, R., & Yürüm, Y. (2014). Fast deposition of porous iron oxide on activated carbon by microwave heating and arsenic (V) removal from water. Chemical Engineering Journal, 242(242), 321–332.

    Article  Google Scholar 

  • Zama, E. F., Zhu, Y., Reid, B. J., & Sun, G. (2017). The role of biochar properties in influencing the sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous solution. Journal of Cleaner Production, 148, 127–136.

    Article  CAS  Google Scholar 

  • Zhang, M., & Gao, B. (2013). Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chemical Engineering Journal, 226(24), 286–292.

    Article  CAS  Google Scholar 

  • Zhang, Q. L., Lin, Y. C., Chen, X., & Gao, N. Y. (2007a). A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. Journal of Hazardous Materials, 148(3), 671–678.

    Article  CAS  Google Scholar 

  • Zhang, G., Qu, J., Liu, H., Liu, R., & Wu, R. (2007b). Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Research, 41(9), 1921–1928.

    Article  CAS  Google Scholar 

  • Zhou, Z., Liu, Y. G., Liu, S. B., Liu, H. Y., Zeng, G. M., Tan, X. F., et al. (2017). Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin-modified biochar. Chemical Engineering Journal, 314, 223–231.

    Article  CAS  Google Scholar 

  • Zhu, N., Yan, T., Qiao, J., & Cao, H. (2016). Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization. Chemosphere, 164, 32–40.

    Article  CAS  Google Scholar 

  • Zhu, L., Zhao, N., Tong, L., Lv, Y., & Li, G. (2018). Characterization and evaluation of surface modified materials based on porous biochar and its adsorption properties for 2,4-dichlorophenoxyacetic acid. Chemosphere, 210, 734–744.

    Article  CAS  Google Scholar 

  • Zimmerman, A. R., Gao, B., & Ahn, M. Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43(6), 1169–1179.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (41771525, 41273136) and the National Science Foundation of Tianjin (15JCZDJC33900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguo Song.

Ethics declarations

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 3.65 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Song, Z., Huang, Y. et al. Removal and Oxidation of Arsenic from Aqueous Solution by Biochar Impregnated with Fe-Mn Oxides. Water Air Soil Pollut 230, 105 (2019). https://doi.org/10.1007/s11270-019-4146-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4146-5

Keywords

Navigation