Skip to main content
Log in

Adsorption of As(V) from Water over a Hydroxyl-Alumina Modified Paddy Husk Ash Surface and Its Sludge Immobilization

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Arsenic (As) is considered as one of the most hazardous elements found in the groundwater. It is present in water in both arsenate (As(V)) and arsenite (As(III)) forms. On exposure for a considerable length of time to water having As concentration above the maximum permissible limit of 10 μg/L, there is a serious threat of developing various health problems including cancer. There is frequent reporting about the development of different newer methods for the removal of arsenic from water. In this present approach, a low-cost product namely modified paddy husk ash (PHA) was used as an adsorbent for the adsorption of arsenic from water. The adsorbent is important from the point of its easy availability in the tropical paddy producing countries. For improved removal efficiency and disposal of spent adsorbent, the surface of the PHA was activated with an aluminum oligomeric solution called as hydroxyl-alumina. To understand the process, various techniques such as XRD, SEM–EDS, particle size determination, and zeta potential measurements were used and the effects like variation of adsorbent dose, pH, initial arsenic concentration, and contact time were studied. The Freundlich adsorption isotherm and pseudo-second-order kinetic models were found to be the best fitted adsorption isotherm and kinetic data models respectively thereby confirming the adsorption as a multilayer chemisorption process. Finally, the issue of disposal of the spent sludge through the successful formation of cement clinkers was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adam, F., & Fook, C. L. (2008). Chromium modified silica from rice husk as an oxidative catalyst. Journal of Porous Materials, 16(3), 291–298.

    Article  Google Scholar 

  • Ahmed, A. E., & Adam, F. (2007). Indium incorporated silica from rice husk and its catalytic activity. Microporous and Mesoporous Materials, 103(1–3), 284–295.

    Article  CAS  Google Scholar 

  • Altundogan, H. S., Altundogan, S., Tumen, F., & Bildik, M. (2002). Arsenic adsorption from aqueous solutions by activated red mud. Waste Management, 22, 357–363.

    Article  CAS  Google Scholar 

  • Amin, M. N., Kaneco, S., Kitagawa, T., Begum, A., Katsumata, H., Suzuki, T., & Ohta, K. (2006). Removal of arsenic in aqueous solutions by adsorption onto waste rice husk. Industrial and Engineering Chemistry Research, 45, 8105–8110.

    Article  CAS  Google Scholar 

  • An, B., Steinwinder, T. R., & Zhao, D. (2005). Selective removal of arsenate from drinking water using a polymeric ligand exchanger. Water Research, 39, 4993–5004.

    Article  CAS  Google Scholar 

  • Asif, Z., & Chen, Z. (2017). Removal of arsenic from drinking water using rice husk. Applied Water Science, 7, 1449–1458.

    Article  CAS  Google Scholar 

  • Baskan, M. B., & Pala, A. (2010). A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination, 254, 42–48.

    Article  Google Scholar 

  • Chakravarty, S., Dureja, V., Bhattacharyya, G., Maity, S., & Bhattacharjee, S. (2002). Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Research, 36, 625–632.

    Article  CAS  Google Scholar 

  • Chandrasekhar, S., Pramada, P. N., & Majeed, J. (2006). Effect of calcination temperature and heating rate on the optical properties and reactivity of rice husk ash. Journal of Materials Science, 41, 7926–7933.

    Article  CAS  Google Scholar 

  • Chetia, M., Goswamee, R. L., Banerjee, S., Chatterjee, S., Singh, L., Srivastava, R. B., & Sarma, H. P. (2012). Arsenic removal from water using calcined Mg–Al layered double hydroxide. Clean Technologies and Environmental Policy, 14(1), 21–27.

    Article  CAS  Google Scholar 

  • Clancy, T. M., Snyder, K. V., Reddy, R., Lanzirotti, A., Amrose, S. E., Raskin, L., & Hayes, K. F. (2015). Evaluating the cement stabilization of arsenic-bearing iron wastes from drinking water treatment. Journal of Hazardous Materials, 300, 522–529.

    Article  CAS  Google Scholar 

  • Dutta, P. K., Ray, A. K., Sharma, V. K., & Millero, F. J. (2004). Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 278, 270–275.

    Article  CAS  Google Scholar 

  • Fuhrman, H. G., Tjell, J. C., McConchie, D., & Schuiling, O. (2003). Adsorption of arsenate from water using neutralized red mud. Journal of Colloid and Interface Science, 264, 327–334.

    Article  Google Scholar 

  • Fuhrman, H. G., Tjell, J. C., & McConchie, D. (2004). Adsorption of arsenic from water using activated neutralized red mud. Environmental Science & Technology, 38, 2428–2434.

    Article  Google Scholar 

  • Garelick, H., Jones, H., Dybowska, A., & Valsami-Jones, E. (2008). Arsenic pollution sources. Reviews of Environmental Contamination, 197, 17–60.

    CAS  Google Scholar 

  • Gholami, M. M., Mokhtari, M. A., Aameri, A., & Fard, M. R. A. (2006). Application of reverse osmosis technology for arsenic removal from drinking water. Desalination, 200, 725–727.

    Article  CAS  Google Scholar 

  • Gogoi, C., Saikia, J., Sarmah, S., Sinha, D., & Goswamee, R. L. (2018). Removal of fluoride from water by locally available sand modified with a coating of iron oxides. Water, Air, & Soil Pollution, 229(118) 1–16.

  • Goswamee, R. L., & Poellmann, H. (1998). XRD study of thermal stability of hydroxyl-aluminium chloride. Indian Journal of Chemistry, 37A, 561–563.

    CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Hossain, M. F. (2006). Arsenic contamination in Bangladesh—an overview. Agriculture, Ecosystems & Environment, 113(1–4), 1–16.

    Article  CAS  Google Scholar 

  • Huang, C. P., & Fu, P. L. K. (1984). Treatment of arsenic (V) -containing water by the activated carbon process. Journal - Water Pollution Control Federation, 56, 233–242.

    CAS  Google Scholar 

  • Indian standards for drinking water, second revision of IS 10500 (2004).

  • Jain, C. K., & Ali, I. (2000). Arsenic: occurrence, toxicity and speciation techniques. Water Research, 34, 4304–4312.

    Article  CAS  Google Scholar 

  • Jiang, J. Q., Ashekuzzaman, S. M., Hargreaves, J. S. J., McFarlane, A. R., Badruzzaman, A. B. M., & Tarek, M. H. (2015). Removal of arsenic (III) from groundwater applying a reusable Mg-Fe-Cl layered double hydroxide. Journal of Chemical Technology and Biotechnology, 90, 1160–1166.

    Article  CAS  Google Scholar 

  • Kartinen, E. O., & Martin, C. J. (1995). An overview of arsenic removal processes. Desalination, 103, 79–88.

    Article  CAS  Google Scholar 

  • Kiping, M.D., Lenihan, J., Fletcher, W.W., (Eds.), (1997) Arsenic. The Chemical Environment, Environment and Man, 6, 93–110.

  • Kołodyńska, D., Wnętrzak, R., Leahy, J., Hayes, M., & Kwapiński, W. (2012). Kinetic and adsorptive characterization of biochar in metal ions removal. Chemical Engineering Journal, 197, 295–305.

    Article  Google Scholar 

  • Lo, S. L., Jeng, H. T., & Lai, C. H. (1997). Characteristics and adsorption properties of iron-coated sand. Water Science and Technology, 35, 63–70.

    Article  CAS  Google Scholar 

  • Luqman, M., Javed, M. M., Yasar, A., Ahmad, J., & Khan, A. (2013). An overview of sustainable techniques used for arsenic removal from drinking water in rural areas of the Indo-Pak subcontinent. Soil and Environment, 32, 87–95.

    Google Scholar 

  • Maeda, S., Ohki, A., Saikoji, S., & Naka, K. (1992). Iron(III) hydroxide-loaded coral limestone as an adsorbent for arsenic(III) and arsenic(V). Separation Science and Technology, 27, 681–689.

    Article  CAS  Google Scholar 

  • Manjare, S. D., Sadique, M. H., & Ghoshal, A. K. (2005). Equilibrium and kinetics studies for As (III) adsorption on activated alumina and activated carbon. Environmental Technology, 26, 1403–1410.

    Article  CAS  Google Scholar 

  • Manning, B. A., & Goldberg, S. (1996). Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite. Clays and Clay Minerals, 44, 609–623.

    Article  CAS  Google Scholar 

  • Manning, B. A., & Goldberg, S. (1997). Adsorption and stability of arsenic (III) at the clay mineral–water interface. Environmental Science & Technology, 31, 2005–2011.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U., Jr. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142, 1–53.

    Article  CAS  Google Scholar 

  • Mohapatra, D., Mishra, D., Roy Chaudhury, G., & Das, R. P. (2007). Arsenic adsorption mechanism on clay minerals and its dependence on temperature. Korean Journal of Chemical Engineering, 24, 426–430.

    Article  CAS  Google Scholar 

  • Ning, R. Y. (2002). Arsenic removal by reverse osmosis. Desalination, 143, 237–241.

    Article  CAS  Google Scholar 

  • Ohki, A., Nakayachigo, K., Naka, K., & Maeda, S. (1996). Adsorption of inorganic and organic arsenic compounds by aluminium-loaded coral limestone. Applied Organometallic Chemistry, 10, 747–752.

    Article  CAS  Google Scholar 

  • Okafor, P. C., Okon, P. U., Daniel, E. F., & Ebenso, E. E. (2012). Adsorption capacity of coconut (Cocos nucifera L.) shell for lead, copper, cadmium and arsenic from aqueous solutions. International Journal of Electrochemical Science, 7, 12354–12369.

    CAS  Google Scholar 

  • Parthasarathy, N., Buffle, J., & Haerd, W. (1986). Study of interaction of polymeric aluminium hydroxide with fluoride. Canadian Journal of Chemistry, 64, 24.

    Article  CAS  Google Scholar 

  • Petrusevski, B., Sharma, S. K., Kruis, F., Omeruglu, P., & Schippers, J. C. (2002). Family filter with iron-coated sand: solution for arsenic removal in rural areas. Water Science and Technology: Water Supply, 2, 127–133.

    CAS  Google Scholar 

  • Polowczyk, I., Cyganowski, P., Ulatowska, J., Sawiński, W., & Bastrzyk, A. (2018). Synthetic iron oxides for adsorptive removal of arsenic. Water Air Soil Pollution, 229, 203.

    Article  Google Scholar 

  • Ranjan, D., Talat, M., & Hasan, S. H. (2009). Rice polish: an alternative to conventional adsorbents for treating arsenic bearing water by up-flow column method. Industrial and Engineering Chemistry Research, 48, 10180–10185.

    Article  CAS  Google Scholar 

  • Santra, B. K. (2017). Arsenic contamination of groundwater in West Bengal: awareness for health and social problems. International Journal of Applied Science and Engineering, 5(1), 43–46.

    Article  Google Scholar 

  • Sarmah, S., Saikia, J., Bordoloi, D., & Goswamee, R. L. (2017). Surface modification of paddy husk ash by hydroxyl-alumina coating to develop an efficient water defluoridation media and the immobilization of the sludge by lime-silica reaction. Journal of Environmental Chemical Engineering, 5, 4483–4493.

    Article  CAS  Google Scholar 

  • Sarmah, S., Saikia, J., Bordoloi, D. K., Kalita, P. J., Bora, J. J., & Goswamee, R. L. (2018). Immobilization of fluoride in cement clinkers using hydroxyl-alumina modified paddy husk ash based adsorbent. Journal of Chemical Technology and Biotechnology, 93, 533–540.

    Article  CAS  Google Scholar 

  • Sengupta, P., Saikia, N. J., & Borthakur, P. C. (2002). Bricks from petroleum ETP sludge: properties and environmental characteristic. Journal of Environmental Engineering, American Society of Civil Engineers (ASCE), 128, 1090–1094.

    Article  CAS  Google Scholar 

  • Shakoor, M. B., Niazi, N. K., Bibi, I., Shahid, M., Sharif, F., Bashir, S., Shaheen, S. M., Wang, H., Tsang, D. C. W., Ok, Y. S., & Rinklebe, J. (2018). Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater. Science of the Total Environment, 645, 1444–1455.

    Article  CAS  Google Scholar 

  • Singh, D. B., Prasad, G., & Rupainwar, D. C. (1996). Adsorption technique for the treatment of As (V)-rich effluents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 111, 49–56.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–569.

    Article  CAS  Google Scholar 

  • Sundaram, S.K., Meher, K.K., Kapur, P.C. (2002). A rice husk ash based domestic water filter, Indian patent no. 187147.

  • Teagarden, D. L., Kozlowski, J. F., White, J. L., & Hem, S. L. (1981). Aluminum chlorohydrate I: structure studies. Journal of Pharmaceutical Sciences, 70, 758–761.

    Article  CAS  Google Scholar 

  • Thirunavukkarasu, O. S., Viraraghavan, T., & Subramanian, K. S. (2003). Arsenic removal from drinking water using iron oxide-coated sand. Water, Air, and Soil Pollution, 142, 95–111.

    Article  CAS  Google Scholar 

  • Vaishya, R. C., & Gupta, S. K. (2002). Modeling arsenic (V) removal from water by sulfate modified iron-oxide coated sand (SMIOCS). Journal of Chemical Technology and Biotechnology, 78, 73–80.

    Article  Google Scholar 

  • Viraraghavan, T., Subramanian, K. S., & Aruldoss, J. A. (1999). Arsenic in drinking water —problems and solutions. Water Science and Technology, 40, 69–76.

    Article  CAS  Google Scholar 

  • Waqas, H., Shan, A., Khan, Y.G., Nawaz, R., Rizwan, M., Rehman, S.-U., Shakoor, M.B., Ahmed W., Jabeen M., (2017). Human health risk assessment of arsenic in groundwater aquifers of Lahore, Pakistan. Human and Ecological Risk Assessment: An International Journal 836–850.

  • Wei, Z., Liang, K., Wu, Y., Zou, Y., Zuo, J., Arriagada, D. C., Pan, Z., & Hu, G. (2016). The effect of pH on the adsorption of arsenic(III) and arsenic(V) at the TiO2 anatase [101] surface. Journal of Colloid and Interface Science, 462, 252–259.

    Article  CAS  Google Scholar 

  • Guidelines for drinking water quality, 4th edition, WHO (2011).

  • WHO (World Health Organisation). (1981). Environmental health criteria (Vol. 18). Geneva: Arsenic, World Health Organisation.

    Google Scholar 

  • Wickramasinghe, S. R., Han, B., Zimbron, J., Shen, Z., & Karim, M. N. (2004). Arsenic removal by coagulation and filtration: comparison of groundwaters from the United States and Bangladesh. Desalination, 169, 231–244.

    Article  CAS  Google Scholar 

  • Yoon, I. H., Moon, D. H., Kim, K. W., Keun-Young Lee, K. Y., Lee, J. H., & Kim, M. G. (2010). Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. Journal of Environmental Management, 91, 2322–2328.

    Article  CAS  Google Scholar 

  • Zhang, X., Fang, X., Li, J., Pan, S., Sun, X., Shen, J., Han, W., Wang, L., & Zhao, S. (2018). Developing new adsorptive membrane by modification of support layer with iron oxide microspheres for arsenic removal. Journal of Colloid and Interface Science, 514, 760–768.

    Article  CAS  Google Scholar 

  • Zouboulis, A., & Katsoyiannis, I. (2002). Removal of arsenates from contaminated water by coagulation–direct filtration. Separation Science and Technology, 37, 2859–2873.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR-NEIST, Jorhat, for allowing to publish the paper. The authors are also grateful to AcSIR for PhD registration and CSC-0408 for providing the facility of SEM analysis.

Funding

This work received funding from DST under DST Project GPP-0296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Lochan Goswamee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmah, S., Saikia, J., Phukan, A. et al. Adsorption of As(V) from Water over a Hydroxyl-Alumina Modified Paddy Husk Ash Surface and Its Sludge Immobilization. Water Air Soil Pollut 230, 32 (2019). https://doi.org/10.1007/s11270-019-4088-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4088-y

Keywords

Navigation