Skip to main content
Log in

Inhibitory Effects of Bidens pilosa Plant Extracts on the Growth of the Bloom-Forming Alga Microcystis aeruginosa

Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Algal blooms are one of the greatest aquatic environmental concerns, and the control of algal blooms has become a great challenge in recent years. In this study, we evaluated the effects of Bidens pilosa plant extracts in comparison to those of several widespread plants, including rice (Oryza sativa), Pistia stratiotes, Eichhornia crassipes, and Pteris vittata, on the growth of the bloom-forming blue-green alga Microcystis aeruginosa. Both ethanolic and methanolic extracts of B. pilosa, in contrast to the other plant extracts, exhibited high inhibitory effects on M. aeruginosa growth at a concentration of 500 mg/L (dry weight equivalent, DWE). The inhibition efficiency in terms of the cell density and chlorophyll a concentration significantly reached 84–88% (p < 0.05). In these treatments, a change in algal culture color (from green to brown) and cell death were obviously observed. When we determined the effective concentrations, the B. pilosa extract at concentrations of 250 and 500 mg/L DWE showed significant inhibitory effects on M. aeruginosa growth (p < 0.05), whereas lower concentrations (50–125 mg/L DWE) showed slight or no effects. These data indicate that B. pilosa plant extracts could be used to control M. aeruginosa algal blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bartolome, A. P., Villaseñor, I. M., & Yang, W.-C. (2013). Bidens pilosa L.(Asteraceae): Botanical properties, traditional uses, phytochemistry, and pharmacology. Evidence-based Complementary and Alternative Medicine, 2013. https://doi.org/10.1155/2013/340215.

  • Box, J. (1981). Enumeration of cell concentrations in suspensions of colonial freshwater microalgae, with particular reference to Microcystis aeruginosa. British Phycological Journal, 16(2), 153–164.

    Article  Google Scholar 

  • Bridgeman, T. B., Chaffin, J. D., & Filbrun, J. E. (2013). A novel method for tracking western Lake Erie Microcystis blooms, 2002–2011. Journal of Great Lakes Research, 39(1), 83–89.

    Article  Google Scholar 

  • Chang, C. L., Chung, C.-Y., Kuo, C.-H., Kuo, T.-F., Yang, C.-W., & Yang, W.-C. (2016). Beneficial effect of Bidens pilosa on body weight gain, food conversion ratio, gut bacteria and coccidiosis in chickens. PLoS One, 11(1), e0146141.

    Article  Google Scholar 

  • Chen, J., Zhang, D., Xie, P., Wang, Q., & Ma, Z. (2009). Simultaneous determination of microcystin contaminations in various vertebrates (fish, turtle, duck and water bird) from a large eutrophic Chinese Lake, Lake Taihu, with toxic Microcystis blooms. Science of the Total Environment, 407(10), 3317–3322.

    Article  CAS  Google Scholar 

  • Chiang, Y.-M., Chuang, D.-Y., Wang, S.-Y., Kuo, Y.-H., Tsai, P.-W., & Shyur, L.-F. (2004). Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa. Journal of Ethnopharmacology, 95(2–3), 409–419.

    Article  CAS  Google Scholar 

  • Chorus, I., & Bartram, J. (2005). Toxic Cyanobacteria in Water. London and New York: Taylor & Francis Group.

    Google Scholar 

  • Deba, F., Xuan, T. D., Yasuda, M., & Tawata, S. (2008). Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. Var. Radiata. Food Control, 19(4), 346–352.

    Article  CAS  Google Scholar 

  • Dodds, W. K., Bouska, W. W., Eitzmann, J. L., Pilger, T. J., Pitts, K. L., Riley, A. J., et al. (2008). Eutrophication of US freshwaters: Analysis of potential economic damages. Environmental Science & Technology, 43(1), 12–19.

    Article  Google Scholar 

  • Falconer, I. R. (1994). Health problems from exposure to cyanobacteria and proposed safety guidelines for drinking and recreational water. In Detection methods of cyanobacterial toxins, The proceedings of the first international symposium on detection methods for cyanobacterial (blue-green algal) toxins.

  • Fulton, R. S., III, & Paerl, H. W. (1987). Toxic and inhibitory effects of the blue-green alga Microcystis aeruginosa on herbivorous zooplankton. Journal of Plankton Research, 9(5), 837–855.

    Article  Google Scholar 

  • Funari, E., & Testai, E. (2008). Human health risk assessment related to cyanotoxins exposure. Critical Reviews in Toxicology, 38(2), 97–125.

    Article  CAS  Google Scholar 

  • Guiry, M. D., & Guiry, G. M. (2016). AlgaeBase. http://www.algaebase.org2016.

  • Horne, A. J., & Goldman, C. R. (1994). Limnology (Second ed.). New York: McGraw-Hill International Ed. USA.

    Google Scholar 

  • Hudnell, H. K. (2008). Cyanobacterial harmful algal blooms: State of the science and research needs. Advances in Experimental Medicine and Biology, 619, 239–257.

    Article  Google Scholar 

  • Khan, M., Kihara, M., & Omoloso, A. (2001). Anti-microbial activity of Bidens pilosa, Bischofia javanica, Elmerillia papuana and Sigesbekia orientalis. Fitoterapia, 72(6), 662–665.

    Article  CAS  Google Scholar 

  • Komárek, J., & Komárková, J. (2002). Review of the European Microcystis-morphospecies (Cyanoprokaryotes) from nature. Czech Phycology, Olomouc, 2, 1–24.

    Google Scholar 

  • Lai, B.-Y., Chen, T.-Y., Huang, S.-H., Kuo, T.-F., Chang, T.-H., Chiang, C.-K., et al. (2015). Bidens pilosa formulation improves blood homeostasis and β-cell function in men: a pilot study. Evidence-Based Complementary and Alternative Medicine, 2015, 1–5.

    Article  Google Scholar 

  • Landsberg, J. H. (2002). The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 10(2), 113–390.

    Article  Google Scholar 

  • Lee, S., & Lee, D. (2018). Improved prediction of harmful algal blooms in four Major South Korea’s Rivers using deep learning models. International Journal of Environmental Research and Public Health, 15(7), 1322.

    Article  Google Scholar 

  • Liang, Y.-C., Yang, M.-T., Lin, C.-J., Chang, C. L.-T., & Yang, W.-C. (2016). Bidens pilosa and its active compound inhibit adipogenesis and lipid accumulation via down-modulation of the C/EBP and PPARγ pathways. Scientific Reports, 6, 24285.

    Article  CAS  Google Scholar 

  • Newman, J. R., & Barrett, P. (1993). Control of Microcystis aeruginosa by decomposing barley straw. Journal of Aquatic Plant Management, 31, 203–203.

    Google Scholar 

  • Nga, P. T., Dien, P. H., Quyen, N. V., Thuong, T. H., Quynh, L. T. P., Dat, N. T., et al. (2017). Inhibitory effect of different Eupatorium fortunei Turcz extracts on the growth of Microcystis aeruginosa. Vietnam Journal of Science and Technology, 55(4C), 103–108.

    Article  Google Scholar 

  • Paerl, H., & Fulton, R. (2006). Ecology of harmful cyanobacteria. Ecology of Harmful Algae, 95–109.

  • Paerl, H. W., Hall, N. S., & Calandrino, E. S. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment, 409(10), 1739–1745.

    Article  CAS  Google Scholar 

  • Park, M.-H., Hwang, S.-J., Ahn, C.-Y., Kim, B.-H., & Oh, H.-M. (2006a). Screening of seventeen oak extracts for the growth inhibition of the cyanobacterium Microcystis aeruginosa Kütz em. Elenkin. Bulletin of Environmental Contamination & Toxicology, 77(1), 9–14.

    Article  CAS  Google Scholar 

  • Park, M. H., Han, M. S., Ahn, C. Y., Kim, H. S., Yoon, B. D., & Oh, H. M. (2006b). Growth inhibition of bloom-forming cyanobacterium Microcystis aeruginosa by rice straw extract. Letters in Applied Microbiology, 43(3), 307–312.

    Article  CAS  Google Scholar 

  • Phlips, E. J., Hendrickson, J., Quinlan, E. L., & Cichra, M. (2007). Meteorological influences on algal bloom potential in a nutrient-rich Blackwater river. Freshwater Biology, 52(11), 2141–2155.

    Article  CAS  Google Scholar 

  • Pillinger, J., Cooper, J., & Ridge, I. (1994). Role of phenolic compounds in the antialgal activity of barley straw. Journal of Chemical Ecology, 20(7), 1557–1569.

    Article  CAS  Google Scholar 

  • Prociv, P. (2004). Algal toxins or copper poisoning - revisiting the Palm Island "epidemic". Medical Journal of Australia, 181(6), 344.

  • Reynolds, C., & Jaworski, G. (1978). Enumeration of natural Microcystis populations. British Phycological Journal, 13(3), 269–277.

    Article  Google Scholar 

  • Sartory, D., & Grobbelaar, J. (1984). Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia, 114(3), 177–187.

    Article  CAS  Google Scholar 

  • Scholin, C. A., Gulland, F., Doucette, G. J., Benson, S., Busman, M., Chavez, F. P., & Haulena, M. (2000). Mortality of sea lions along the Central California coast linked to a toxic diatom bloom. Nature, 403(6765), 80.

    Article  CAS  Google Scholar 

  • Shirai, M., Matumaru, K., Ohotake, A., Takamura, Y., Aida, T., & Nakano, M. (1989). Development of a solid medium for growth and isolation of axenic Microcystis strains (cyanobacteria). Applied and Environmental Microbiology, 55(10), 2569–2571.

    CAS  Google Scholar 

  • Singh, M., Govindarajan, R., Rawat, A. K. S., & Khare, P. B. (2008). Antimicrobial flavonoid rutin from Pteris vittata L. against pathogenic gastrointestinal microflora. American Fern Journal, 98(2), 98–103.

    Article  Google Scholar 

  • Steffen, M. M., Belisle, B. S., Watson, S. B., Boyer, G. L., & Wilhelm, S. W. (2014). Status, causes and controls of cyanobacterial blooms in Lake Erie. Journal of Great Lakes Research, 40(2), 215–225.

    Article  CAS  Google Scholar 

  • Stewart, I., Schluter, P. J., & Shaw, G. R. (2006). Cyanobacterial lipopolysaccharides and human health–a review. Environmental Health, 5(1), 7.

    Article  Google Scholar 

  • Thompson, A. S., Rhodes, J. C., & Pettman, I. (1988). Culture collection of algae and protozoa, catalogue of strains. UK: Natural Environment Research Council.

    Google Scholar 

  • UNESCO. (1966). Determination of Photosynthetic Pigments in Sea Water (monographs in oceanographic methodology). Paris: UNESCO.

    Google Scholar 

  • Van Hullebusch, E., Deluchat, V., Chazal, P. M., & Baudu, M. (2002). Environmental impact of two successive chemical treatments in a small shallow eutrophied lake: Part II. Case of copper sulfate. Environmental Pollution, 120(3), 627–634.

    Article  Google Scholar 

  • Verspagen, J. M., Passarge, J., Jöhnk, K. D., Visser, P. M., Peperzak, L., Boers, P., et al. (2006). Water management strategies against toxic Microcystis blooms in the Dutch delta. Ecological Applications, 16(1), 313–327.

    Article  Google Scholar 

  • Walker, H. W. (2014). Harmful algae blooms in drinking water: Removal of cyanobacterial cells and toxins. Florida: CRC Press.

    Book  Google Scholar 

  • Wasmund, N., Topp, I., & Schories, D. (2006). Optimising the storage and extraction of chlorophyll samples. Oceanologia, 48(1), 125–144.

    Google Scholar 

  • Wu, X., Zhang, Z., Chen, D., Zhang, J., Yang, W., & Jin, Y. (2012). Allelopathic effects of Eichhornia crassipes on the growth of Microcystis aeruginosa. Journal of Agricultural Science and Technology A, 2, 1400–1406.

    CAS  Google Scholar 

  • Wu, X., Wu, H., Chen, J., & Ye, J. (2013). Effects of allelochemical extracted from water lettuce (Pistia stratiotes Linn.) on the growth, microcystin production and release of Microcystis aeruginosa. Environmental Science and Pollution Research, 20(11), 8192–8201.

    Article  CAS  Google Scholar 

  • Zilberg, B. (1966). Gastroenteritis in Salisbury European children-a five-year study. Central African Journal of Medicine, 12(9), 164–168.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Laboratory for Ecological and Environmental Research, Hanoi National University of Education, for facilitating this study.

Funding

This work was supported by the Hanoi National University of Education (SPHN17-11), the Ministry of Education and Training of Vietnam (B 2016-SPH-19), and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A1A03012862).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quyen Van Nguyen or Kyung-Hwan Boo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Nguyen, Q., Tran, T.H., Pham, T.N. et al. Inhibitory Effects of Bidens pilosa Plant Extracts on the Growth of the Bloom-Forming Alga Microcystis aeruginosa. Water Air Soil Pollut 230, 24 (2019). https://doi.org/10.1007/s11270-019-4077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4077-1

Keywords

Navigation