Skip to main content
Log in

Effects of Light and Potassium Ion on Buoyancy Regulation with Gas Vesicle in a Cyanobacterium Microcystis aeruginosa NIES-843

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, we confirmed the effects of light and K+ concentration on the buoyancy of the cyanobacterium Microcystis aeruginosa (Kutzing) Lemmermann (NIES-843), and the relationship between the gas vesicle and buoyancy of M. aeruginosa was revealed through the culture experiment. The results showed that under laboratory conditions, light illumination and K+ concentration strongly affected the flotation and settlement of M. aeruginosa, and that the floating and settling cycle of M. aeruginosa could be reproduced in a test tube by controlling light illuminance. The ability of M. aeruginosa buoyancy weakened with the increase in the K+ concentration, and M. aeruginosa could not exhibit buoyancy at the K+ concentration of 0.03 mol/L. The phase-contrast microscope observation revealed that M. aeruginosa that floated on the water surface had gas vesicles, while none of the gas vesicles was detected for M. aeruginosa at the bottom of a test tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn, C.-Y., Park, D.-K., Kim, H.-S., Chung, A.-S., & Oh, H.-M. (2004). K: Fe ratio as an indicator of cyanobacterial bloom in a eutrophic lake. Journal of Microbiology and Biotechnology, 14(2), 290–296.

    CAS  Google Scholar 

  • Allison, E. M., & Walsby, A. (1981). The role of potassium in the control of turgor pressure in a gas-vacuolate blue-green alga. Journal of Experimental Botany, 32(1), 241–249.

    Article  CAS  Google Scholar 

  • Beard, S. J., Hayes, P. K., Pfeifer, F., & Walsby, A. E. (2002). The sequence of the major gas vesicle protein, GvpA, influences the width and strength of halobacterial gas vesicles. FEMS Microbiology Letters, 213(2), 149–157.

    Article  CAS  Google Scholar 

  • Chapra, S. C., Dove, A., & Warren, G. J. (2012). Long-term trends of Great Lakes major ion chemistry. Journal of Great Lakes Research, 38(3), 550–560.

    Article  CAS  Google Scholar 

  • Chu, Z., Jin, X., Yang, B., & Zeng, Q. (2007). Buoyancy regulation of Microcystis flos-aquae during phosphorus-limited and nitrogen-limited growth. Journal of Plankton Research, 29(9), 739–745.

    Article  CAS  Google Scholar 

  • Damerval, T., Guglielmi, G., Houmard, J., & De Marsac, N. T. (1991). Hormogonium differentiation in the cyanobacterium Calothrix: a photoregulated developmental process. The Plant Cell, 3(2), 191–201.

    Article  Google Scholar 

  • Dervaux, J., Mejean, A., & Brunet, P. (2015). Irreversible collective migration of cyanobacteria in eutrophic conditions. PLoS One, 10(3), e0120906.

    Article  Google Scholar 

  • Garrity, G. M. (2012). Bergey’s Manual of Systematic Bacteriology: volume one: the archaea and the deeply branching and phototrophic bacteria: Springer Science & Business Media.

  • González-Fernández, C., & Ballesteros, M. (2012). Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnology Advances, 30(6), 1655–1661.

    Article  Google Scholar 

  • Hayes, P., Buchholz, B., & Walsby, A. (1992). Gas vesicles are strengthened by the outer-surface protein, GvpC. Archives of Microbiology, 157(3), 229–234.

    Article  CAS  Google Scholar 

  • Imai, H., Chang, K.-H., Kusaba, M., & Nakano, S.-I. (2008). Temperature-dependent dominance of Microcystis (Cyanophyceae) species: M. aeruginosa and M. wesenbergii. Journal of Plankton Research, 31(2), 171–178.

    Article  Google Scholar 

  • Kromkamp, J. C., & Mur, L. R. (1984). Buoyant density changes in the cyanobacterium Microcystis aeruginosa due to changes in the cellular carbohydrate content. FEMS Microbiology Letters, 25(1), 105–109.

    Article  CAS  Google Scholar 

  • Kromkamp, J., Botterweg, J., & Mur, L. R. (1988). Buoyancy regulation in Microcystis aeruginosa grown at different temperatures. FEMS Microbiology Letters, 53(3–4), 231–237.

    Article  Google Scholar 

  • Madigan, M. T., Martinko, J. M., & Parker, J. (2017). Brock biology of microorganisms (vol. 13): Pearson.

  • Novina, C., Meister, G., Ostermeier, M., & Xiong, T. (2017). Systems and methods for genome modification and regulation. US Patent App. 15/539,256.

  • Pfeifer, F. (2012). Distribution, formation and regulation of gas vesicles. Nature Reviews Microbiology, 10(10), 705.

    Article  CAS  Google Scholar 

  • Sato, M., Amano, Y., Machida, M., & Imazeki, F. (2017). Colony formation of highly dispersed Microcystis aeruginosa by controlling extracellular polysaccharides and calcium ion concentrations in aquatic solution. Limnology, 18(1), 111–119.

    Article  CAS  Google Scholar 

  • Sigee, D. (2005). Freshwater microbiology: biodiversity and dynamic interactions of microorganisms in the aquatic environment: John Wiley & Sons.

  • Sugimoto, K., Amano, Y., Machida, M., Imazeki, F. (2014). Effects of nutrient concentration and light exposure on the buoyancy of subcultured strain Microcystis aeruginosa. The 28th Conference on Environmental Information Science, Vol.28, 161–166.

  • Thomas, R., & Walsby, A. E. (1986). The effect of temperature on recovery of buoyancy by Microcystis. Microbiology, 132(6), 1665–1672.

    Article  Google Scholar 

  • Walsby. (1994). Gas vesicles. Microbiological Reviews, 58(1), 94–144.

    CAS  Google Scholar 

  • Walsby, A. E., Hayes, P. K., Boje, R., & Stal, L. J. (1997). The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. The New Phytologist, 136(3), 407–417.

    Article  Google Scholar 

  • Wang, Y.-W., Zhao, J., Li, J.-H., Li, S.-S., Zhang, L.-H., & Wu, M. (2011). Effects of calcium levels on colonial aggregation and buoyancy of Microcystis aeruginosa. Current Microbiology, 62(2), 679–683.

    Article  CAS  Google Scholar 

  • Watson, S. B., Ridal, J., & Boyer, G. L. (2008). Taste and odour and cyanobacterial toxins: impairment, prediction, and management in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 65(8), 1779–1796.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Takayuki Negishi, Meijo University, Japan, for his fruitful and helpful discussions about the phase-contrast microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, K., Amano, Y., Machida, M. et al. Effects of Light and Potassium Ion on Buoyancy Regulation with Gas Vesicle in a Cyanobacterium Microcystis aeruginosa NIES-843. Water Air Soil Pollut 229, 352 (2018). https://doi.org/10.1007/s11270-018-4010-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-4010-z

Keywords

Navigation