Skip to main content
Log in

Optimization and Characterization of Cladophora sp. Alga Immobilized in Alginate Beads and Silica Gel for the Biosorption of Mercury from Aqueous Solutions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biosorption has gained much ground as a wastewater treatment technology. In this work, modified algal biosorbents were synthesized by immobilizing Cladophora sp. alga in alginate beads and silica gel. The resultant biosorbents were evaluated for the retrieval of mercury from aqueous solutions using batch scale experiments. Optimal metal removal was achieved at pH 5, agitation time 60 min, initial metal concentration 100 mg L−1, and temperature 16 °C. Moreover, the experimental data fitted the Langmuir isotherm, pseudo-second-order kinetic model and Dubinin-Radushkevich isotherm thus showing that biosorption occurred on a homogeneous layer and ion exchange was the dominant mechanism. Both biosorbents also had high selectivity for Hg2+ in multi-elemental solutions. This work showed the potential of Cladophora sp. immobilized in alginate beads and silica gel in removing mercury from industrial wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Aty, A. M., Ammar, N. S., Ghafar, H. H. A., & Ali, R. K. (2013). Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. Journal of Advanced Research, 4(4), 367–374.

    Article  CAS  Google Scholar 

  • Abu Al-Rub, F. A., El-Naas, M. H., Benyahia, F., & Ashour, I. (2004). Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochemistry, 39(11), 1767–1773.

    Article  CAS  Google Scholar 

  • Ahmady-Asbchin, S., & Azhdehakoshpour, A. (2012). Biosorption of Cu (II) and Ni (II) ions from aqueous solution by marine brown algae Sargassum angustifolium. Journal of Biodiversity and Environmental Sciences, 6(18), 271–279.

  • Akar, T., Kaynak, Z., Ulusoy, S., Yuvaci, D., Ozsari, G., & Akar, S. T. (2009). Enhanced biosorption of nickel (II) ions by silica-gel-immobilized waste biomass: biosorption characteristics in batch and dynamic flow mode. Journal of Hazardous Materials, 163(2), 1134–1141.

    Article  CAS  Google Scholar 

  • Amin, F., Talpur, F. N., Balouch, A., Chandio, Z. A., Surhio, M. A., & Afridi, H. I. (2016). Biosorption of mercury (II) from aqueous solution by fungal biomass Pleurotus eryngii: isotherm, kinetic, and thermodynamic studies. Environmental Progress & Sustainable Energy, 35(5), 1274–1282.

    Article  CAS  Google Scholar 

  • Anastopoulos, I., & Kyzas, G. Z. (2015). Progress in batch biosorption of heavy metals onto algae. Journal of Molecular Liquids, 209, 77–86.

    Article  CAS  Google Scholar 

  • Apiratikul, R., & Pavasant, P. (2008). Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresource Technology, 99(8), 2766–2777.

    Article  CAS  Google Scholar 

  • Bağda, E., Tuzen, M., & Sarı, A. (2017). Equilibrium, thermodynamic and kinetic investigations for biosorption of uranium with green algae (Cladophora hutchinsiae). Journal of Environmental Radioactivity, 175, 7–14.

    Article  Google Scholar 

  • Barquilha, C. E. R., Cossich, E. S., Tavares, C. R. G., & Silva, E. A. (2017). Biosorption of nickel (II) and copper (II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. Journal of Cleaner Production, 150, 58–64.

    Article  CAS  Google Scholar 

  • Bayramoğlu, G., Tuzun, I., Celik, G., Yilmaz, M., & Arica, M. Y. (2006). Biosorption of mercury (II), cadmium (II) and lead (II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. International Journal of Mineral Processing, 81(1), 35–43.

    Article  CAS  Google Scholar 

  • Carro, L., Barriada, J. L., Herrero, R., & de Vicente, M. E. S. (2011). Adsorptive behavior of mercury on algal biomass: competition with divalent cations and organic compounds. Journal of Hazardous Materials, 192(1), 284–291.

    CAS  Google Scholar 

  • Cataldo, S., Gianguzza, A., Pettignano, A., & Villaescusa, I. (2013). Mercury (II) removal from aqueous solution by sorption onto alginate, pectate and polygalacturonate calcium gel beads. A kinetic and speciation based equilibrium study. Reactive and Functional Polymers, 73(1), 207–217.

    Article  CAS  Google Scholar 

  • Cataldo, S., Gianguzza, A., & Pettignano, A. (2016). Sorption of Pd (II) ion by calcium alginate gel beads at different chloride concentrations and pH. A kinetic and equilibrium study. Arabian Journal of Chemistry, 9(5), 656–667.

    Article  CAS  Google Scholar 

  • Cazón, J. P., Viera, M., Donati, E., & Guibal, E. (2013). Zinc and cadmium removal by biosorption on Undaria pinnatifida in batch and continuous processes. Journal of Environmental Management, 129, 423–434.

  • Dada, A. O., Olalekan, A. P., Olatunya, A. M., & Dada, O. (2012). Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 3(1), 38–45.

    Article  CAS  Google Scholar 

  • Daemi, H., & Barikani, M. (2012). Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica, 19(6), 2023–2028.

    Article  CAS  Google Scholar 

  • De-Bashan, L. E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology, 101(6), 1611–1627.

    Article  CAS  Google Scholar 

  • Dönmez, G. Ç., Aksu, Z., Öztürk, A., & Kutsal, T. (1999). A comparative study on heavy metal biosorption characteristics of some algae. Process Biochemistry, 34(9), 885–892.

    Article  Google Scholar 

  • El-Naggar, A. Y., & Si, C. (2013). Thermal analysis of the modified and unmodified silica gels to estimate their applicability as stationary phase in gas chromatography. Journal of Emerging Trends in Engineering and Applied Sciences, 4(1), 144–148.

    Google Scholar 

  • Esmaeili, A., Saremnia, B., & Kalantari, M. (2015). Removal of mercury (II) from aqueous solutions by biosorption on the biomass of Sargassum glaucescens and Gracilaria corticata. Arabian Journal of Chemistry, 8(4), 506–511.

    Article  CAS  Google Scholar 

  • Figueira, P., Lopes, C. B., Daniel-da-Silva, A. L., Pereira, E., Duarte, A. C., & Trindade, T. (2011). Removal of mercury (II) by dithiocarbamate surface functionalized magnetite particles: application to synthetic and natural spiked waters. Water Research, 45(17), 5773–5784.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Rastogi, A. (2006). Biosorption of lead (II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—a comparative study. Colloids and Surfaces B: Biointerfaces, 64(2), 170–178.

  • Gupta, V. K., Rastogi, A., & Nayak, A. (2010). Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. Journal of Colloid and Interface Science, 342(2), 533–539.

    Article  CAS  Google Scholar 

  • Han, D. S., Orillano, M., Khodary, A., Duan, Y., Batchelor, B., & Abdel-Wahab, A. (2014). Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg (II)) from water. Water Research, 53, 310–321.

    Article  CAS  Google Scholar 

  • Jafari, N., & Senobari, Z. (2012). Removal of Pb (II) ions from aqueous solutions by Cladophora rivularis (Linnaeus) hoek. Scientific World Journal, 2012.

  • Ji, L., Xie, S., Feng, J., Li, Y., & Chen, L. (2012). Heavy metal uptake capacities by the common freshwater green alga Cladophora fracta. Journal of Applied Phycology, 24(4), 979–983.

  • Khoramzadeh, E., Nasernejad, B., & Halladj, R. (2013). Mercury biosorption from aqueous solutions by Sugarcane Bagasse. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 266–269.

  • Kumar, J. N., & Oommen, C. (2012). Removal of heavy metals by biosorption using freshwater alga Spirogyra hyalina. Journal of Environmental Biology, 33(1), 27–31.

    CAS  Google Scholar 

  • Kumar, D., Pandey, L. K., & Gaur, J. P. (2016). Metal sorption by algal biomass: from batch to continuous system. Algal Research, 18, 95–109.

    Article  Google Scholar 

  • Lee, Y. C., & Chang, S. P. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology, 102(9), 5297–5304.

    Article  CAS  Google Scholar 

  • Lohani, M. B., Singh, A., Rupainwar, D. C., & Dhar, D. N. (2008). Studies on efficiency of guava (Psidium guajava) bark as bioadsorbent for removal of Hg (II) from aqueous solutions. Journal of Hazardous Materials, 159(2), 626–629.

    Article  CAS  Google Scholar 

  • Meitei, M. D., & Prasad, M. N. V. (2013). Lead (II) and cadmium (II) biosorption on Spirodela polyrhiza (L.) Schleiden biomass. Journal of Environmental Chemical Engineering, 1(3), 200–207.

    Article  CAS  Google Scholar 

  • Mishra, A., Tripathi, B. D., & Rai, A. K. (2016). Packed-bed column biosorption of chromium(VI) and nickel(II) onto Fenton modified Hydrilla verticillata dried biomass. Ecotoxicology and Environmental Safety, 132, 420–428.

  • Mohan, D., Gupta, V. K., Srivastava, S. K., & Chander, S. (2001). Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 177(2), 169–181.

    Article  CAS  Google Scholar 

  • Moreno-Garrido, I. (2008). Microalgae immobilization: current techniques and uses. Bioresource Technology, 99(10), 3949–3964.

    Article  CAS  Google Scholar 

  • Muzarabani, N., Mupa, M., Gwatidzo, L., & Machingauta, C. (2015). Silica gel matrix immobilized Chlorophyta Hydrodictyon africanum for the removal of methylene blue from aqueous solutions: equilibrium and kinetic studies. African Journal of Biotechnology, 14(31), 2463–2471.

    Article  Google Scholar 

  • Oehmen, A., Vergel, D., Fradinho, J., Reis, M. A., Crespo, J. G., & Velizarov, S. (2014). Mercury removal from water streams through the ion exchange membrane bioreactor concept. Journal of Hazardous Materials, 264, 5–70.

    Article  CAS  Google Scholar 

  • Parkhurst DL, & Appelo CAJ (2013). Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Techniques and Methods, book 6, chap A43, p 497.

  • Patel, N., Lalwani, D., Gollmer, S., Injeti, E., Sari, Y., & Nesamony, J. (2016). Development and evaluation of a calcium alginate based oral ceftriaxone sodium formulation. Progress in Biomaterials, 5(2), 117–133.

    Article  CAS  Google Scholar 

  • Petrovic, A., & Simonic, M. (2016). Removal of heavy metals from drinking water by alginate-immobilized Chlorella sorokiniana. International journal of Environmental Science and Technology, 13, 1761–1780.

    Article  CAS  Google Scholar 

  • Qiusheng, Z., Xiaoyan, L., Jin, Q., Jing, W., & Xuegang, L. (2015). Porous zirconium alginate beads adsorbent for fluoride adsorption from aqueous solutions. RSC Advances, 5(3), 2100–2112.

  • Rezaee, A., Ramavandi, B., & Ganati, F. (2006). Equilibrium and spectroscopic studies on biosorption of mercury by algae biomass. Pakistan Journal of Biological Sciences, 9(4), 777–782.

    Article  CAS  Google Scholar 

  • Rocha, L. S., Lopes, C. B., Henriques, B., Tavares, D. S., Borges, J. A., Duarte, A. C., & Pereira, E. (2014). Competitive effects on mercury removal by an agricultural waste: application to synthetic and natural spiked waters. Environmental Technology, 35(6), 661–673.

    Article  CAS  Google Scholar 

  • Ruiz-Marin, A., Mendoza-Espinosa, L. G., & Stephenson, T. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology, 101(1), 58–64.

    Article  CAS  Google Scholar 

  • Shabudeen, S. P. S., Daniel, S., & Indhumathi, P. (2013). Utilizing the pods of Delonix regia activated carbon for the removal of mercury (II) by adsorption technique. Journal of Research in Chemistry and Environment, 3, 60–65.

    Google Scholar 

  • Sheikha, D., Ashour, I., & Al-Rub, F. A. (2008). Biosorption of zinc on immobilized green algae: equilibrium and dynamics studies. The Journal of Engineering Research, 5(1), 20–29.

    Article  Google Scholar 

  • Singh, A., Mehta, S. K., Gaur, J. P. (2007). Removal of heavy metals from aqueous solution by common freshwater filamentous algae. World Journal of Microbiology and Biotechnology, 23(8), 1115–1120.

  • Singh, S. K., Dixit, K., & Sundaram, S. (2014). Effect of acidic and basic pretreatment of wild algal biomass on Cr (VI) biosorption. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(5), 38–41.

  • Song, D., Park, S. J., Kang, H. W., Park, S. B., & Han, J. I. (2013). Recovery of lithium (I), strontium (II), and lanthanum (III) using Ca-alginate beads. Journal of Chemical & Engineering Data, 58(9), 2455–2464.

  • Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresource Technology, 99(14), 6017–6027.

    Article  CAS  Google Scholar 

  • Suharso, Buhani, & Sumadi. (2010). Immobilization of S. duplicatum supported silica gel matrix and its application on adsorption-desorption of Cu (II), Cd (II) and Pb (II) ions. Desalination, 263(1–3), 64–69.

    Article  CAS  Google Scholar 

  • Torres, E., Mata, Y. N., Blazquez, M. L., Munoz, J. A., Gonzalez, F., & Ballester, A. (2005). Gold and silver uptake and nanoprecipitation on calcium alginate beads. Langmuir, 21(17), 7951–7958.

    Article  CAS  Google Scholar 

  • Tuzen, M., Sarı, A., Mendil, D., Uluozlu, O. D., Soylak, M., & Dogan, M. (2009). Characterization of biosorption process of As (III) on green algae Ulothrix cylindricum. Journal of Hazardous Materials, 165(1), 566–572.

    Article  CAS  Google Scholar 

  • Urgun-Demirtas, M., Negri, M. C., Gillenwater, P. S., Nnanna, & Yu, J. (2013). Meeting world’s most stringent Hg criterion: a pilot-study for the treatment of oil refinery wastewater using an ultrafiltration membrane process. Journal of Environmental Management, 117, 65–75.

    Article  CAS  Google Scholar 

  • Vasudevan, S., Lakshmi, J., & Sozhan, G. (2012). Optimization of electrocoagulation process for the simultaneous removal of mercury, lead, and nickel from contaminated water. Environmental Science and Pollution Research, 19, 2734–2744.

  • Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems—a literature review. Environmental Pollution, 131(2), 323–336.

    Article  CAS  Google Scholar 

  • Wang, S., Vincent, T., Faur, C., & Guibal, E. (2016). Alginate and algal-based beads for the sorption of metal cations: Cu (II) and Pb (II). International Journal of Molecular Sciences, 17(9), 1453.

    Article  CAS  Google Scholar 

  • Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R., & McHenry, M. P. (2016). Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management, 181, 817–831.

    Article  CAS  Google Scholar 

  • Zeroual, Y., Moutaouakkil, A., Dzairi, F. Z., Talbi, M., Chung, P. U., Lee, K., & Blaghen, M. (2003). Biosorption of mercury from aqueous solution by Ulva lactuca biomass. Bioresource Technology, 90(3), 349–351.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Government of Botswana and the PMA at the University of the Witwatersrand for financial support for Joy G. Mokone.

Funding

This research did not receive any specific grant from funding agencies in public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa M. Cukrowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokone, J.G., Tutu, H., Chimuka, L. et al. Optimization and Characterization of Cladophora sp. Alga Immobilized in Alginate Beads and Silica Gel for the Biosorption of Mercury from Aqueous Solutions. Water Air Soil Pollut 229, 215 (2018). https://doi.org/10.1007/s11270-018-3859-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3859-1

Keywords

Navigation