Skip to main content

Advertisement

Log in

Remediating Montreal’s Tree Pit Soil Applying an Ash Tree-Derived Biochar

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biochar as a soil amendment in street tree pits can be used to increase the soil’s ability to retain contaminants found in urban runoff. The increased retention can potentially decrease peak concentrations of soluble trace metals and de-icing salts in the soil solution, thereby decreasing the amounts taken up by tree roots or percolated out of the tree pits into the ground water. A leaching test measured the retention of trace metals (Cd, Zn, Cu, and Pb) and deicing salts (Na) by different kinds of biochar. The biochar was produced from hardwood (North American ash tree, Fraxinus americana) under different pyrolysis conditions, with three temperatures (350, 465 and 550 °C) and two residence times (10 and 30 min). Biochar pyrolyzed at 550 °C for 30 min significantly reduced the soluble concentrations of Zn, Cu, and Pb in the column leachate, most likely due to the its higher pH, surface area, and ash content. The pH of each treatment group was measured while the increase in ash content and surface area was inferred according to relevant literature. This biochar was then combined with soil and compost at rates ranging from 0 to 7.5% by dry weight to determine the proportion that optimally sorbed the contaminants. An application rate of 7.5% biochar by dry weight increased the soil mixture’s sorption capacity for Cd and Na while maintaining similar sorption of Cu, Zn, and Pb. The role of organic matter, such as that in compost, was especially important for the sorption of Zn and Cu. Hardwood biochar can thus improve the health of street trees and groundwater quality by sequestering trace metals and de-icing salts. Biochar can also be a useful tool to remediate contaminated soil, especially in urban environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asai, H., Samson, B. K., Stephan, H. M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., & Horie, T. (2009). Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research, 111(81–84), 1–2.

    Google Scholar 

  • Backstrom, M., Karlsson, S., Backman, L., Folkeson, L., & Lind, B. (2004). Mobilisation of heavy metals by deicing salts in roadside environments. Water Research, 38, 720–732.

    Article  CAS  Google Scholar 

  • Bauske, B., & Goetz, D. (1993). Effects of de-icing salts on heavy metal mobility. Acta Hydrochimica et Hydrobiologica., 21(1), 38–42.

    Article  CAS  Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159(12), 3269–3282.

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T. 2013. Chapter 4, The potential of biochar amendments to remediate contaminated soils, Biochar and soil biota. CRC Press; 100–133.

  • Bloomfield, C., & Sanders, J. R. (1977). The complexing of copper by humified organic matter from laboratory preparations, soil and peat. European Journal of Soil Science., 28(3), 435–444.

    Article  CAS  Google Scholar 

  • Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277, 1–18.

    Article  CAS  Google Scholar 

  • Byrne, C. E., & Nagle, D. C. (1997). Carbonized wood monoliths—characterization. Carbon, 35, 267–273.

    Article  CAS  Google Scholar 

  • Cain NP, Hale B, Berkelaar E and Morin D. 2001. Critical review of effects of NaCl and other road salts on terrestrial vegetation in Canada. Report submitted to the Environment Canada CEPA Priority Substances List Environmental Resource Group on Road Salts. July 2001. Existing substances branch, Environment Canada, Hull, Quebec.

  • Canadian Environmental Quality Guidelines (CEQG): water quality guideline for the protection of aquatic life. 2014. Winnipeg (MB). Canadian Council of Ministers of the Environment (CCME) [accessed 2017 Apr 24]. http://st-ts.ccme.ca/en/index.html?chems=20,71,124,200,229&chapters=1

  • Cao, X., Ma, L., Liang, Y., Gao, B., & Harris, W. (2011). Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science and Technology, 45L, 4884–4889.

    Article  Google Scholar 

  • Chai, Y., Currie, R. J., Davis, J. W., Wilken, M., Martin, G. D., Fishman, V. N., & Ghosh, U. (2012). Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo-p-dioxins/dibenzofurans in soils. Environmental Science and Technology., 46(2), 1035–1043.

    Article  CAS  Google Scholar 

  • Clark, S. E., & Pitt, R. (2007). Influencing factors and a proposed evaluation methodology for predicting groundwater contamination potential from stormwater infiltration activities. Water Environment Research., 79(1), 29–36.

    Article  CAS  Google Scholar 

  • Cunningham, M. A., Snyder, E., Yonkin, D., Ross, M., & Elsen, T. (2008). Accumulation of deicing salts in soils in an urban environment. Urban Ecosystems., 11(1), 17–31.

    Article  Google Scholar 

  • Davis, A. P., & Bhatnagar, V. (1995). Adsorption of cadmium and humic acid onto hematite. Chemosphere, 30, 243–256.

    Article  CAS  Google Scholar 

  • Davis, A. P., Shokouhian, M., & Ni, S. (2001). Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere, 44, 997–1009.

    Article  CAS  Google Scholar 

  • Elkhatib, E. A., Elshebiny, G. M., & Balba, A. M. (1991). Lead sorption in calcareous soils. Environmental Pollution., 69(4), 269–276.

    Article  CAS  Google Scholar 

  • Fahr, M., Laplaze, L., Bendaou, N., Hocher, V., Mzibri, B., & Smouni. (2013). Effect of lead on root growth. Frontiers in Plant Science., 4, 175.

    Article  Google Scholar 

  • Fein, J. B., Boily, J. F., Güçlü, K., & Kaulbach, E. (1999). Experimental study of humic acid adsorption onto bacterial and Al-oxide mineral surfaces. Chemical Geology., 162(1), 33–45.

    Article  CAS  Google Scholar 

  • Fellet, G., Marchiol, L., Delle Vedove, G., & Pressotti, A. (2011). Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere, 83(9), 1262–1267.

    Article  CAS  Google Scholar 

  • Forján, R., Asensio, V., Rodriguez-Vila, A., & Covelo, E. F. (2016). Contributions of a compost-biochar mixture to the metal sorption capacity of a mine tailing. Environmental Science and Pollution Research International., 23(3), 2596–2602.

    Article  Google Scholar 

  • Gao, X., & Wu, H. (2014). Aerodynamic properties of biochar particles: effect of grinding and implications. Environmental Science & Technology Letters., 1(1), 60–64.

    Article  CAS  Google Scholar 

  • Gonzalez, M. E., Romero-Hermoso, L., Gonzalez, A., Hidalgo, P., Meier, S., Navia, R., & Cea, M. (2017). Effects of pyrolysis condition on physicochemical properties of oat hull derived biochar. BioResources, 12(1), 2040–2057.

    Article  CAS  Google Scholar 

  • Hendershot WH, Lalande H, Reyes D, MacDonald JD. 2008. Trace element assessment. In Soil sampling and methods of analysis. Second edition. Lewis Publishers, Canadian Society of Soil Science. p.109–119.

  • Houben, D., Evrad, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminate soil amended with biochar. Chemosphere, 92(11), 1450–1457.

    Article  CAS  Google Scholar 

  • Huber, M., Welker, A., & Helmreich, B. (2016). Critical review of heavy metal pollution of traffic area runoff: occurrence, influencing factors and partitioning. Science of the Total Environment., 514, 895–919.

    Article  Google Scholar 

  • Jim, C. Y. (1998). Physical and chemical properties of a Hong Kong roadside soil in relation to urban tree growth. Urban Ecosystems., 2, 171–181.

    Article  Google Scholar 

  • Kargar, M., Clark, O. G., Hendershot, W. H., Jutras, P., & Prasher, S. O. (2015). Immobilization of trace metals in contaminated urban soil amended with compost and biochar. Water, Air and Soil Pollution., 226, 12.

    Article  Google Scholar 

  • Kargar, M., Clark, O. G., Hendershot, W. H., Jutras, P., & Prasher, S. O. (2016). Bioavailability of Na and trace metals under direct and indirect effects of compost in urban soils. Journal of Environmental Quality., 45, 1003–1012.

    Article  CAS  Google Scholar 

  • Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon. Environmental Science and Technology., 44(4), 1247–1253.

    Article  CAS  Google Scholar 

  • Klasson, K. T., Uchimiya, M., & Lima, I. M. (2010). Uncovering surface area and micropores in almond shell biochars by rainwater wash. Chemosphere, 111, 129–134.

    Article  Google Scholar 

  • Kloss, et al. (2012). Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality., 41(4), 990–1000.

    Article  CAS  Google Scholar 

  • Lehmann, J., Pereira da Silva, J., Steiner, C., Nehls, T., Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249, 343–357.

    Article  CAS  Google Scholar 

  • Lehmann, J., Gaunt, J., & Rondon, M. (2006). Biochar sequestration in terrestrial ecosystems—a review. Mitigation and Adaptation Strategies for Global Change., 11(2), 395–419.

    Article  Google Scholar 

  • Li, X., Liu, L., Wang, Y., Luo, G., Chen, X., Yang, X., Hall, M. H. P., Guo, R., Wang, H., Cui, J., & He, X. (2013). Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma, 192, 50–58.

    Article  CAS  Google Scholar 

  • Li, F., Zhang, Y., Fan, Z., & Oh, K. (2015). Accumulation of de-icing salts and its short-term effect on metal mobility in urban roadside soils. Bulletin of Environmental Contamination and Toxicology., 94, 525–531.

    Article  CAS  Google Scholar 

  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J. O., Thies, J., Luizao, F. J., Petersen, J., & Neves, E. G. (2006). Black carbon increases cation exchange capacity in soil. Soil Science Society of America., 70(5), 1719–1730.

    Article  CAS  Google Scholar 

  • Lindsay WL. 1979. Chemical equilibria in soil. Wiley. Chapter 13, Zinc; p. 210-216.

  • Luo, X. S., Yu, S., & Li, X. D. (2012). The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong. Applied Chemistry., 27, 995–1004.

    CAS  Google Scholar 

  • McBride, M. B. (1994). Environmental chemistry of soils. New York: Oxford University Press.

    Google Scholar 

  • McGrath, S. P., Sanders, J. R., & Shalaby, M. H. (1998). The effects of soil organic matter levels on soil solution concentrations and extractabilities of manganese, zinc, and copper. Geoderma, 42(2), 177–188.

    Article  Google Scholar 

  • McKenzie, E. R., Money, J. E., Green, P. G., & Young, T. M. (2009). Metals associated with stormwater relevant brake and tire sample. The Science of the Total Environment., 407(22), 5855–5860.

    Article  CAS  Google Scholar 

  • Namgay, T., & Singh, B. (2010). Influence of biochar application to soil on the availability of As, Cd, Cu, Pb and Zn to maize (Zea mays L.) Australian Journal of Soil Research, 48, 638–647.

    Article  CAS  Google Scholar 

  • Neal, R. H., & Sposito, G. (1986). Effects of soluble organic matter and sewage sludge amendments on cadmium sorption by soils at low cadmium concentrations. Soil Science., 142(3), 164–172.

    Article  CAS  Google Scholar 

  • Nelson, S. S., Yonge, D. R., & Barber, M. E. (2009). Effects of road salts on heavy metal mobility in two eastern Washington soils. Journal of Environmental Engineering., 135(7), 505–510.

    Article  CAS  Google Scholar 

  • Norrström, A. C., & Bergstedt, E. (2001). The impact of road de-icing salts (NaCl) on colloid dispersion and base cation pools in roadside soils. Water, Air and Soil Pollution., 127(1), 281–299.

    Article  Google Scholar 

  • Qian, L., & Chen, B. (2013). Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles. Environmental Science and Technology., 47, 8759–8768.

    CAS  Google Scholar 

  • Reddy, M. R., & Perkins, H. F. (1974). Fixation of zinc by clay minerals. Soil Science Society of America., 38(2), 229–231.

    Article  CAS  Google Scholar 

  • Reddy, M. R., & Perkins, H. F. (1976). Fixation of manganese by clay minerals. Soil Science., 191, 21–24.

    Article  Google Scholar 

  • Santillan-Medrano, J., & Jurinak, J. J. (1975). The chemistry of lead and cadmium in soil: solid phase formation. Soil Science Society of America Journal., 39, 851–856.

    Article  CAS  Google Scholar 

  • Sun, J., He, F., Yinghua, P., & Zhang, Z. (2016). Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science., 67(1), 12–22.

    Article  Google Scholar 

  • Tiller, K. G., & Hodgson, J. F. (1962). The specific sorption of cobalt and zinc by layer silicates. Clays and Clay Minerals, 9, 393–303.

    Article  CAS  Google Scholar 

  • Tonutare T, Krebstein K, Utso M, Rodima A, Kolli R, Shanskiy M. 2014. Biochar contribution to soil pH buffer capacity. EGU general assembly. Volume 16.

  • Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., & Lima, I. M. (2011). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59, 2501–2510.

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE. 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices. 2011: 20 pages.

  • Yu, Z., Qiu, W., Wang, F., Lei, M., Wang, D., & Song, Z. (2017). Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere, 168, 341–349.

    Article  CAS  Google Scholar 

  • Zhang, J., Liu, J., & Liu, R. (2015). Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresource Technology., 176, 288–291.

    Article  CAS  Google Scholar 

  • Zhang, M. K., He, Z. L., Calvert, D. V., & Stoffella. (2006). Extractability and mobility of copper and zinc accumulate in sandy soils. Pedosphere, 16(1), 43–49.

    Article  CAS  Google Scholar 

  • Zheng, W., Guo, M., Chow, T., Bennett, D. N., & Rajagopalan, N. (2010). Sorption properties of greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials., 181(1–3), 121–126.

    Article  CAS  Google Scholar 

  • Zimmerman AR, Gao B. 2013. Chapter 1, The stability of biochar in the environment, Biochar and soil biota. CRC Press. p.1–40.

Download references

Acknowledgements

The authors thank the City of Montreal Transport Department for providing the financial support for this study and Hélène Lalande for the time and effort she has given to support the laboratory work. Equally noteworthy is the Direction des travaux publics, division voirie et parcs Arrondissement de Côte-des-Neiges-Notre-Dame-de-Grâce for providing the wood chips used in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rose Seguin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seguin, R., Kargar, M., Prasher, S.O. et al. Remediating Montreal’s Tree Pit Soil Applying an Ash Tree-Derived Biochar. Water Air Soil Pollut 229, 84 (2018). https://doi.org/10.1007/s11270-018-3725-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3725-1

Keywords

Navigation