Skip to main content
Log in

Remediation of Phenanthrene-Contaminated Soil by Persulfate Activated with Fe-Modified Diatomite: Kinetic and Statistical Approaches

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

An innovative diatomite-supported iron catalyst has been developed by using an impregnation process with a mixture of ferrous (Fe2+) and ferric (Fe3+) ions in the form of precipitated iron hydroxides. Raw and modified diatomite samples have been characterized by X-ray fluorescence and scanning electron microscopy. The main characterization results have revealed that modified diatomites are amorphous and have higher iron concentrations than raw diatomite. The results also indicate that the modified materials provided significant catalytic activity on phenanthrene degradation by using sodium persulfate. Satisfactory results were obtained with 45 g/L of sodium persulfate and 1 g of modified diatomite, thus degrading 98% of phenanthrene during 168 h of treatment. Kinetic and statistical approaches were developed for the remediation process herein, which have been validated with experimental data, thence yielding suitable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Shafy, H. I., & Mansour, M. S. M. (2015). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, 107–123.

    Article  Google Scholar 

  • Anjos, RB (2012) Assessment of PAH and BTEX in soil and groundwater in fuel reseller stations: Case study in Natal-RN city. Masters dissertation. Federal University of Rio Grande do Norte, Department of Science and Petroleum Engineering. Natal, Brazil.

  • Bakr, H. E. G. M. M. (2010). Diatomite: its characterization, modifications and applications. Asian Journal of Materials Science, 2(3), 121–136.

    Article  Google Scholar 

  • Favera, C. H. D. (2008). Contaminated sites by hydrocarbons: principal remediation techniques and application example. Course conclusion work of civil Engineering. Brazil: Federal University of Santa Maria.

    Google Scholar 

  • Forsey, S. P., Thomson, N. R., & Barker, J. F. (2010). Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate. Chemosphere, 79, 628–636.

    Article  CAS  Google Scholar 

  • Fu, J., Zhaob, Y., & Wu, Q. J. (2007). Optimizing photoelectrocatalytic oxidation of fulvic acid using response surface methodology. Journal of Hazardous Materials, 144, 499–505.

    Article  CAS  Google Scholar 

  • Huling, S., & Pivetz, B. (2006). Engineering issue: in situ chemical oxidation, EPA 600/R-06/072. U.S. EPA, Office of Research and Development, 60 pp.

  • Joglekar, A. M., & May, A. T. (1987). Product excellence through design of experiments. Cereal Food World, 32, 857–868.

    Google Scholar 

  • Jorfi, S., Rezaee, A., Moheb-ali, G., & Jaafarzadeh, N. (2013). Pyrene removal from contaminated soils by modified Fenton oxidation using iron nano particles. Journal of Environmental Health Science & Engineering, 1, 11–17.

    Article  Google Scholar 

  • Kong, S.-H., Watts, R. J., & Choi, J.-H. (1998). Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere, 37, 1473–1482.

    Article  CAS  Google Scholar 

  • Kwan, W. P., & Voelker, B. M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environmental Science & Technology, 37, 1150–1158.

    Article  CAS  Google Scholar 

  • Leneva, N. A., Kolomytseva, M. P., Baskunov, B. P., & Golovleva, L. A. (2009). Phenanthrene and anthracene degradation by microorganisms of the genus Rhodococcus. Applied Biochemistry and Microbiology, 45(2), 169–175.

    Article  CAS  Google Scholar 

  • Osgerby, I. T. (2006). ISCO technology overview: do you really understand the chemistry? In E. J. Calabrese, P. T. Kostecki, J. Dragun, & I. T. Osgerby (Eds.), Contaminated soils, sediments and water (pp. 287–308). USA: Springer.

    Chapter  Google Scholar 

  • Pookmanee, P., Thippraphan, P., & Phanichphant, S. (2010). Manganese chloride modification of natural diatomite by using hydrothermal method. Journal of the Microscopy Society of Thailand, 24, 99–102.

    Google Scholar 

  • Pouran, S. R., Raman, A. A. A., & Daud, W. M. A. W. (2014). Journal of Cleaner Production, 64, 24–35.

    Article  Google Scholar 

  • PSOD-1 - Permanganate Soil Oxidant Demand - Screening Phase- ASTM Method (2006) Standard test method for determining the permanganate soil oxidant demand.

  • Reza, A. P. S., Hasan, A. M., Ahmad, J. J., Zohreh, F., & Jafar, T. (2015). The effect of acid and thermal treatment on a natural diatomite. Chemistry Journal, 1(4), 144–150.

    Google Scholar 

  • Samarghandi, M. R., Mehralipour, J., Azarin, G., Godini, K., & Shabanlo, A. (2017). Decomposition of sodium dodecylbenzene sulfonate surfactant by electro/Fe2+-activated persulfate process from aqueous solutions. Global NEST Journal, 19(1), 115–121.

    Google Scholar 

  • Silva, C. K. O., Aguiar, L. G., Ciriaco, M. F., Vianna, M. M. G. R., Nascimento, C. A. O., Chiavone-Filho, O., Pereira, C. G., & Foletto, E. L. (2014). Remediation of solid matrix containing anthracene and phenanthrene by permanganate oxidant. Global NEST Journal, 16, 394–402.

    CAS  Google Scholar 

  • Silva, C. K. O., Vianna, M. M. G. R., Foletto, E. L., Chiavone-Filho, O., & Nascimento, C. A. O. (2015). Optimizing phenanthrene and anthracene oxidation by sodium persulfate and Fe-modified diatomite using the response surface method. Water, Air & Soil Pollution, 226(4), 1–11.

    Article  CAS  Google Scholar 

  • Silva-Rackov, C. K. O., Lawal, W. A., Nfodzo, P. A., Vianna, M. M. G. R., Nascimento, C. A. O., & Choi, H. (2016). Degradation of PFOA by hydrogen peroxide and persulfate activated by iron-modified diatomite. Applied Catalysis B: Environmental, 192(5), 253–259.

    Article  Google Scholar 

  • Usman, M., Faura, P., Hanna, K., Abdelmoula, M., & Rubby, C. (2012). Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination. Fuel, 96, 270–276.

    Article  CAS  Google Scholar 

  • Vianna, M. M. G. R., Dweck, J., Quina, F. H., Carvalho, F. M. S., & Nascimento, C. A. O. (2010a). Toluene and naphthalene sorption by iron oxide/clay composites. Part I. Materials characterization. Journal of Thermal Analysis and Calorimetry, 100, 889–896.

    Article  CAS  Google Scholar 

  • Vianna, M. M. G. R., Dweck, J., Quina, F. H., Carvalho, F. M. S., & Nascimento, C. A. O. (2010b). Toluene and naphthalene sorption by iron oxide/clay composites. Part II. Sorption experiments. Journal of Thermal Analysis and Calorimetry, 101, 887–892.

    Article  CAS  Google Scholar 

  • Xiong, W (2009) Development and application of ferrihydrite-modified diatomite and gypsum for phosphorus control in lakes and reservoirs. Thesis. Department of Civil and Geological Engineering. University of Saskatchewan.

  • Xiong, W., & Peng, J. (2008). Development and characterization of ferrihydrite-modified diatomite as a phosphorus adsorbent. Water Research, 424(3), 4869–4877.

    Article  Google Scholar 

  • Yang, G. C. C., & Yeh, C. F. (2011). Enhanced nano-Fe3O4/S2O82 oxidation of trichloroethylene in a clayey soil by electrokinetics. Separation and Purification Technology. doi:10.1016/j.seppur.2011.03.003.

  • Zhaolun, W., Yuxiang, Y., Xuping, Q., Jianbo, Z., Yaru, C., & Linxi, N. (2005). Decolouring mechanism of zhejiang diatomite. Application to printing and dyeing wastewater. Environmental Chemistry Letter, 3, 33–37.

    Article  Google Scholar 

Download references

Acknowledgements

Acknowledgements to the National Institute of Science and Technology for Environmental Studies (INCT-EMA), Brazilian Research Council (CNPq), State of São Paulo Research Foundation (FAPESP—Project No. 2014/22080-9), Coordination for the Improvement of Higher Education Personnel (CAPES—Project PROCAD-CAPES No. 88881.068433/2014-01) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro G. Aguiar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Rackov, C.K.O., Aguiar, L.G., Souza, A.R. et al. Remediation of Phenanthrene-Contaminated Soil by Persulfate Activated with Fe-Modified Diatomite: Kinetic and Statistical Approaches. Water Air Soil Pollut 228, 271 (2017). https://doi.org/10.1007/s11270-017-3456-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3456-8

Keywords

Navigation