Skip to main content
Log in

Comparative Evaluation of Photo-Chemical AOPs for Ciprofoxacin Degradation: Elimination in Natural Waters and Analysis of pH Effect, Primary Degradation By-Products, and the Relationship with the Antibiotic Activity

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this work, ciprofloxacin (CIP) degradation is investigated using different photo-chemical advanced oxidation processes (AOPs): Fe2+/H2O2/UV, TiO2/UV, and H2O2/UV. At natural pH, direct oxidation at the photo-generated holes showed to be the main pathway during TiO2/UV process, while H2O2/UV and Fe2+/H2O2/UV degradation mainly occurred by hydroxyl radical attack. The identification of degradation by-products confirmed the differences in the degradation pathways. Water matrix effects were also investigated by evaluating the influence of the initial pH and testing CIP degradation in mineral natural water and distilled water. Significant differences were observed associated to the pH, the H2O2/UV system being the less affected process. Natural water showed to be an inhibitor medium for the tested photo-chemical processes. Interestingly, H2O2/UV system showed again to be not considerably affected by the natural water matrix. Additionally, degradation extent of treated solutions was determined by the mineralization level (TOC removal) and the antimicrobial activity (AA) elimination using Staphylococcus aureus and Escherichia coli as probe microorganisms. Despite mineralization was no reached in any case, AA elimination was promoted by all processes suggesting the formation of by-products with non-antibiotic character. However, due to the particular degradation pathway, interesting differences were observed according to the type of bacteria when TiO2 photo-catalysis was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AOPs:

Advanced oxidation processes

H2O2/UV254 :

Ultraviolet light radiation and hydrogen peroxide system using light radiation of 254 nm

ECs:

Emergent contaminants

CIP:

Ciprofloxacin

Fe2+/H2O2/UV365 :

Photo-Fenton system using light radiation of 365 nm

TiO2/UV365 TiO2 :

Photo-catalysis system using light radiation of 365 nm

DW:

Distilled water

NW:

Natural water

TOC:

Total organic carbon

AA:

Antibiotic activity

References

  • An, T., Yang, H., Li, G., Song, W., Cooper, W. J., & Nie, X. (2010). Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. Applied Catalysis B: Environmental, 94, 288–294. doi:10.1016/j.apcatb.2009.12.002.

    Article  CAS  Google Scholar 

  • Augugliaro, V., Bellardita, M., Loddo, V., Palmisano, G., Palmisano, L., & Yurdakal, S. (2012). Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. Journal of Photochemistry and Photobiology C Photochemistry Reviews, 13, 224–245. doi:10.1016/j.jphotochemrev.2012.04.003.

    Article  CAS  Google Scholar 

  • Batchu, S. R., Panditi, V. R., O’Shea, K. E., & Gardinali, P. R. (2014). Photodegradation of antibiotics under simulated solar radiation: implications for their environmental fate. Science of the Total Environment, 470-471, 299–310. doi:10.1016/j.scitotenv.2013.09.057.

    Article  CAS  Google Scholar 

  • Bobu, M., Yediler, A., Siminiceanu, I., Zhang, F., & Schulte-Hostede, S. (2013). Comparison of different advanced oxidation processes for the degradation of two fluoroquinolone antibiotics in aqueous solutions. Journal of Environmental Science and Health, Part A, 48, 251–262. doi:10.1080/10934529.2013.726805.

    Article  CAS  Google Scholar 

  • Bolong, N., Ismail, A. F., Salim, M. R., & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239, 229–246. doi:10.1016/j.desal.2008.03.020.

    Article  CAS  Google Scholar 

  • Bu, Q., Wang, B., Huang, J., Deng, S., & Yu, G. (2013). Pharmaceuticals and personal care products in the aquatic environment in China: a review. Journal of Hazardous Materials, 262, 189–211. doi:10.1016/j.jhazmat.2013.08.040.

    Article  CAS  Google Scholar 

  • De la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., de Alencastro, L. F., & Pulgarín, C. (2012). Degradation of 32 emergent contaminants by UV and neutral photo-Fenton in domestic wastewater effluent previously treated by activated sludge. Water Research, 46, 1947–1957. doi:10.1016/j.watres.2012.01.014.

    Article  CAS  Google Scholar 

  • De Lima Perini, J. A., Perez-Moya, M., & Nogueira, R. F. P. (2013). Photo-Fenton degradation kinetics of low ciprofloxacin concentration using different iron sources and pH. Journal of Photochemistry and Photobiology A: Chemistry, 259, 53–58. doi:10.1016/j.jphotochem.2013.03.002.

    Article  Google Scholar 

  • Fatta-Kassinos, D., Vasquez, M. I., & Kümmerer, K. (2011). Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes—degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere, 85, 693–709. doi:10.1016/j.chemosphere.2011.06.082.

    Article  CAS  Google Scholar 

  • Frontistis, Z., Kouramanos, M., Moraitis, S., Chatzisymeon, E., Hapeshi, E., Fatta-Kassinos, D., Xekoukoulotakis, N. P., & Mantzavinos, D. (2014). UV and simulated solar photodegradation of 17α-ethynylestradiol in secondary-treated wastewater by hydrogen peroxide or iron addition. Catalysis Today. doi:10.1016/j.cattod.2014.10.012.

  • Giraldo, A. L., Peñuela, G. A., Torres-Palma, R. A., Pino, N. J., Palominos, R. A., & Mansilla, H. D. (2010). Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Research, 44, 5158–5167. doi:10.1016/j.watres.2010.05.011.

    Article  CAS  Google Scholar 

  • Glaze, W., Kang, J.-H., & Chapin, D. (1987). The chemistry of water treatment process involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Science and Engineering, 9, 335–352.

    Article  CAS  Google Scholar 

  • Grebel, J. E., Pignatello, J. J., & Mitch, W. A. (2010). Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Environmental Science & Technology, 44, 6822–6828. doi:10.1021/es1010225.

    Article  CAS  Google Scholar 

  • Guo, H.-G., Gao, N.-Y., Chu, W.-H., Li, L., Zhang, Y.-J., Gu, J.-S., & Gu, Y.-L. (2013). Photochemical degradation of ciprofloxacin in UV and UV/H2O2 process: kinetics, parameters, and products. Environmental Science and Pollution Research, 20, 3202–3213. doi:10.1007/s11356-012-1229-x.

    Article  CAS  Google Scholar 

  • Guzman-Duque, F., Pétrier, C., Pulgarin, C., Peñuela, G., & Torres-Palma, R. A. (2011). Effects of sonochemical parameters and inorganic ions during the sonochemical degradation of crystal violet in water. Ultrasonics Sonochemistry, 18, 440–446. doi:10.1016/j.ultsonch.2010.07.019.

    Article  CAS  Google Scholar 

  • Haddad, T., & Kümmerer, K. (2014). Characterization of photo-transformation products of the antibiotic drug ciprofloxacin with liquid chromatography-tandem mass spectrometry in combination with accurate mass determination using an LTQ-Orbitrap. Chemosphere, 115, 40–46. doi:10.1016/j.chemosphere.2014.02.013.

    Article  CAS  Google Scholar 

  • Hazime, R., Ferronato, C., Fine, L., Salvador, A., Jaber, F., & Chovelon, J.-M. (2012). Photocatalytic degradation of imazalil in an aqueous suspension of TiO2 and influence of alcohols on the degradation. Applied Catalysis B: Environmental, 126, 90–99. doi:10.1016/j.apcatb.2012.07.007.

    Article  CAS  Google Scholar 

  • Herrmann, J.-M., Guillard, C., & Pichat, P. (1993). Heterogeneous photocatalysis: an emerging technology for water treatment. Catalysis Today, 17, 7–20. doi:10.1016/0920-5861(93)80003-J.

    Article  CAS  Google Scholar 

  • Homem, V., & Santos, L. (2011). Degradation and removal methods of antibiotics from aqueous matrices—a review. Journal of Environmental Management, 92, 2304–2347. doi:10.1016/j.jenvman.2011.05.023.

    Article  CAS  Google Scholar 

  • Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 35, 402–417. doi:10.1016/j.envint.2008.07.009.

    Article  CAS  Google Scholar 

  • Korzeniewska, E., Korzeniewska, A., & Harnisz, M. (2013). Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicology and Environmental Safety, 91, 96–102. doi:10.1016/j.ecoenv.2013.01.014.

    Article  CAS  Google Scholar 

  • Kremer, M. L. (2003). The Fenton reaction. Dependence of the rate on pH. The Journal of Physical Chemistry. A, 107, 1734–1741. doi:10.1021/jp020654p.

    Article  CAS  Google Scholar 

  • Liao, C. H., Kang, S. F., & Wu, F. A. (2001). Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process. Chemosphere, 44, 1193–1200.

    Article  CAS  Google Scholar 

  • Lopez-Alvarez, B., Torres-Palma, R. A., Ferraro, F., & Peñuela, G. (2012). Solar photo-Fenton treatment of carbofuran: analysis of mineralization, toxicity, and organic by-products. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 47, 2141–2150. doi:10.1080/10934529.2012.696029.

    Article  CAS  Google Scholar 

  • Martinez, M., McDermott, P., & Walker, R. (2006). Pharmacology of the fluoroquinolones: a perspective for the use in domestic animals. Veterinary Journal, 172, 10–28. doi:10.1016/j.tvjl.2005.07.010.

    Article  CAS  Google Scholar 

  • Méndez-Arriaga, F., Torres-Palma, R. A., Pétrier, C., Esplugas, S., Gimenez, J., & Pulgarin, C. (2009). Mineralization enhancement of a recalcitrant pharmaceutical pollutant in water by advanced oxidation hybrid processes. Water Research, 43, 3984–3991. doi:10.1016/j.watres.2009.06.059.

    Article  Google Scholar 

  • Paul, T., Dodd, M. C., & Strathmann, T. J. (2010). Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity. Water Research, 44, 3121–3132. doi:10.1016/j.watres.2010.03.002.

    Article  CAS  Google Scholar 

  • Pereira, J. H. O. S., Reis, A. C., Homem, V., Silva, J. A., Alves, A., Borges, M. T., Boaventura, R. A. R., Vilar, V. J. P., & Nunes, O. C. (2014). Solar photocatalytic oxidation of recalcitrant natural metabolic by-products of amoxicillin biodegradation. Water Research, 65, 307–320. doi:10.1016/j.watres.2014.07.037.

    Article  CAS  Google Scholar 

  • Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36, 1–84. doi:10.1080/10643380500326564.

    Article  CAS  Google Scholar 

  • Porras, J., Bedoya, C., Silva-Agredo, J., Santamaría, A., Fernandez, J. J., & Torres-Palma, R. a. (2016). Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water. Water Research, 94, 1–9. doi:10.1016/j.actamat.2015.02.029.

    Article  CAS  Google Scholar 

  • Razuc, M., Garrido, M., Caro, Y. S., Teglia, C. M., Goicoechea, H. C., & Fernández Band, B. S. (2013). Hybrid hard- and soft-modeling of spectrophotometric data for monitoring of ciprofloxacin and its main photodegradation products at different pH values. Spectrochimica Acta - Part A, Molecular and Biomolecular Spectroscopy, 106, 146–154. doi:10.1016/j.saa.2012.12.085.

    Article  CAS  Google Scholar 

  • Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93, 1268–1287. doi:10.1016/j.chemosphere.2013.07.059.

    Article  CAS  Google Scholar 

  • Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., Michael, I., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Science of the Total Environment, 447, 345–360. doi:10.1016/j.scitotenv.2013.01.032.

    Article  CAS  Google Scholar 

  • Ruales-Lonfat, C., Barona, J. F., Sienkiewicz, A., Bensimon, M., Vélez-Colmenares, J., Benítez, N., & Pulgarín, C. (2015). Iron oxides semiconductors are efficients for solar water disinfection: a comparison with photo-Fenton processes at neutral pH. Applied Catalysis B: Environmental, 166-167, 497–508. doi:10.1016/j.apcatb.2014.12.007.

    Article  CAS  Google Scholar 

  • Rubio-Clemente, A., Torres-Palma, R. A., & Peñuela, G. A. (2014). Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review. Science of the Total Environment, 478, 201–225. doi:10.1016/j.scitotenv.2013.12.126.

    Article  CAS  Google Scholar 

  • Rusu, A., Tóth, G., Szőcs, L., Kökösi, J., Kraszni, M., Gyéresi, Á., & Noszál, B. (2012). Triprotic site-specific acid—base equilibria and related properties of fluoroquinolone antibacterials. Journal of Pharmaceutical and Biomedical Analysis, 66, 50–57. doi:10.1016/j.jpba.2012.02.024.

    Article  CAS  Google Scholar 

  • Serna-Galvis, E. A., Silva-Agredo, J., Giraldo, A. L., Flórez-Acosta, O. A., & Torres-Palma, R. A. (2016). Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton, TiO2-photocatalysis and electrochemical processes. Science of the Total Environment, 541, 1431–1438. doi:10.1016/j.scitotenv.2015.10.029.

    Article  CAS  Google Scholar 

  • Torniainen, K., Askolin, C. P., & Mattinen, J. (1997). Isolation and structure elucidation of an intermediate in the photodegradation of ciprofloxacin. Journal of Pharmaceutical and Biomedical Analysis, 16, 439–445. doi:10.1016/S0731-7085(97)00076-9.

    Article  CAS  Google Scholar 

  • Van Doorslaer, X., Demeestere, K., Heynderickx, P. M., Van Langenhove, H., & Dewulf, J. (2011). UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: reaction kinetics and role of adsorption. Applied Catalysis B: Environmental, 101, 540–547. doi:10.1016/j.apcatb.2010.10.027.

    Article  CAS  Google Scholar 

  • Van Doorslaer, X., Heynderickx, P. M., Demeestere, K., Debevere, K., Van Langenhove, H., & Dewulf, J. (2012). TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin: operational variables and scavenger study. Applied Catalysis B: Environmental, 111-112, 150–156. doi:10.1016/j.apcatb.2011.09.029.

    Article  CAS  Google Scholar 

  • Vasconcelos, T. G., Henriques, D. M., König, A., Martins, A. F., & Kümmerer, K. (2009). Photo-degradation of the antimicrobial ciprofloxacin at high pH: Identification and biodegradability assessment of the primary by-products. Chemosphere, 76, 487–493. doi:10.1016/j.chemosphere.2009.03.022.

    Article  CAS  Google Scholar 

  • Villegas-Guzman, P., Silva-Agredo, J., Giraldo-Aguirre, A. L., Flórez-Acosta, O., Petrier, C., & Torres-Palma, R. A. (2014). Enhancement and inhibition effects of water matrices during the sonochemical degradation of the antibiotic dicloxacillin. Ultrasonics Sonochemistry, 22, 211–219. doi:10.1016/j.ultsonch.2014.07.006.

    Article  Google Scholar 

  • Villegas-Guzman, P., Silva-Agredo, J., González-Gómez, D., Giraldo-Aguirre, A. L., Flórez-Acosta, O., & Torres-Palma, R. A. (2015). Evaluation of water matrix effects, experimental parameters, and the degradation pathway during the TiO2 photocatalytical treatment of the antibiotic dicloxacillin. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 50, 40–48. doi:10.1080/10934529.2015.964606.

    Article  CAS  Google Scholar 

  • Villegas-Guzman, P., Silva-Agredo, J., Florez, O., Giraldo-Aguirre, A. L., Pulgarin, C., & Torres-Palma, R. A. (2017). Selecting the best AOP for isoxazolyl penicillins degradation as a function of water characteristics: effects of pH, chemical nature of additives and pollutant concentration. Journal of Environmental Management, 190, 72–79. doi:10.1016/j.jenvman.2016.12.056.

    Article  CAS  Google Scholar 

  • Watts, R. J., Foget, M. K., Kong, S. H., & Teel, A. L. (1999). Hydrogen peroxide decomposition in model subsurface systems. Journal of Hazardous Materials, 69, 229–243. doi:10.1016/S0304-3894(99)00114-4.

    Article  CAS  Google Scholar 

  • Wellington, E. M. H., Boxall, A. B., Cross, P., Feil, E. J., Gaze, W. H., Hawkey, P. M., Johnson-Rollings, A. S., Jones, D. L., Lee, N. M., Otten, W., Thomas, C. M., & Williams, A. P. (2013). The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. The Lancet Infectious Diseases, 13, 155–165. doi:10.1016/S1473-3099(12)70317-1.

    Article  CAS  Google Scholar 

  • Zhou, C., Gao, N., Deng, Y., Chu, W., Rong, W., & Zhou, S. (2012). Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water. Journal of Hazardous Materials, 231-232, 43–48. doi:10.1016/j.jhazmat.2012.06.032.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Swiss Agency for Development and Cooperation (SDC) and Swiss National Science Foundation (SNSF) for their financial support through the project: “Treatment of the hospital wastewaters in Cote d’Ivore and in Colombia by advanced oxidation processes.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Torres-Palma.

Electronic Supplementary Material

ESM 1

(DOCX 2794 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villegas-Guzman, P., Oppenheimer-Barrot, S., Silva-Agredo, J. et al. Comparative Evaluation of Photo-Chemical AOPs for Ciprofoxacin Degradation: Elimination in Natural Waters and Analysis of pH Effect, Primary Degradation By-Products, and the Relationship with the Antibiotic Activity. Water Air Soil Pollut 228, 209 (2017). https://doi.org/10.1007/s11270-017-3388-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3388-3

Keywords

Navigation