Skip to main content

Advertisement

Log in

Removal of Toxic Metals from Sewage Sludge Through Chemical, Physical, and Biological Treatments—a Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The implantation of wastewater treatment systems aims to minimize environmental impacts, but ultimately generates waste materials, such as sewage sludge, which must be properly discarded. Final disposal in landfills, and incineration are the most commonly used disposal methods, but both constitute a threat to the soil, water, air, and food chain. The most suitable alternative for the disposal of sewage sludge is its use as fertilizer, due to the nutrients in its composition, such as nitrogen, phosphorus, and organic carbon. However, the presence of potentially toxic metals is the main factor that limits such use. Many techniques have been employed in attempt to remove these toxic metals, including physical, chemical, and biological treatments, but the high cost of the physical and chemical treatments, as well as the risk of causing secondary pollution, makes this type of sewage sludge treatment an unsatisfactory option. Therefore, removing toxic metals through biological treatments has become an increasingly popular choice, as such treatments have been shown to be the most economically and environmentally beneficial methods. The aim of the present study was to provide a review of some of the most common alternative treatments for the incineration and disposal of sludge in landfills, emphasizing the physical, chemical, and biological processes that enable the removal of potentially toxic metals, for the purpose of obtaining a final product which can be used as fertilizers in farm soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andreoli, C. V. (2001). Sewage sludge: treatment and final disposal (Lodo de esgotos: Tratamento e disposição final) (1st ed., Vol. 6). Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental.

    Google Scholar 

  • Associação Brasileira de Nórmas Técnicas (ABNT) (2004). NBR 10004: Solid waste: classification (NBR 10004: Resíduos Sólidos: classificação). São Paulo: ABNT.

  • Azizi, A. B., Lim, M. P. M., Noor, Z. M., & Abdullah, N. (2013). Vermiremoval of heavy metal in sewage sludge by utilising Lumbricus rubellus. Ecotoxicology and Environmental Safety, 90, 13–20.

    Article  CAS  Google Scholar 

  • Banat, I. M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M. G., Fracchia, L., Smyth, T. J., & Marchant, R. (2010). Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology, 87, 427–444.

    Article  CAS  Google Scholar 

  • Brasil (2010). Law N o . 12.305 of August 2, 2010 - National Policy on Solid Waste (PNRS). (Lei N° 12.305 de 02 de agosto de 2010 - Política Nacional de Resíduos Sólidos- PNRS).

  • Chen, H., Yan, S.-H., Ye, Z.-L., Meng, H.-J., & Zhu, Y.-G. (2012). Utilization of urban sewage sludge: Chinese perspectives. Environmental Sciences and Pollution Research, 19, 1454–1463.

    Article  CAS  Google Scholar 

  • Cheng, Y. X., Hua, Y. M., Zhang, S. H., & Tiang, G. M. (2005). Transformation of heavy metal forms during sewage sludge bioleaching. Journal of Hazardous Materials, B123, 196–202.

    Article  Google Scholar 

  • Cieslik, B. M., Namiesnik, J., & Konieczka, P. (2015). Review of sewage sludge management: standards, regulations and analytical methods. Journal of Cleaner Production, 90, 1–15.

    Article  CAS  Google Scholar 

  • CONAMA, Conselho Nacional do Meio Ambiente (2006). Resolution No. 375. Criteria and procedures for the agricultural use of sewage sludge generated in sewage treatment plants and their derivatives, and other measures (Resolução n° 375. Critérios e procedimentos para o uso agrícola de lodos de esgoto gerados em estações de tratamento de esgoto sanitário e seus produtos derivados, e dá outras providências).

  • Dabrowski, A., Hubicki, Z., Podkoscielny, & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56, 91–106.

    Article  CAS  Google Scholar 

  • CETESB - Companhia de Tecnologia de Saneamento Ambiental (1999). Standard P4.230: Sludge Application of biological treatment systems in agricultural areas - Criteria for the design and operation (Norma P4.230: Aplicação de lodos de sistemas de tratamento biológico em áreas agrícolas – Critérios para projeto e operação), São Paulo.

  • Deng, J., Feng, X., & Qiu, X. (2009). Extraction of heavy metal from sewage sludge using ultrasound-assisted nitric acid. Chemical Engineering Journal, 152, 177–182.

    Article  CAS  Google Scholar 

  • Domínguez-Crespo, M. A., Sánchez-Hernandez, E. S., Torres-Huerta, A. M., Negrete-Rodriguez, M. L. X., Conde-Barajas, E., & Flores-Vela, A. (2012). Effect of the heavy metals Cu, Ni, Cd and Zn on the growth and reproduction of epigeic earthworms (E. fetida) during the vermistabilization of municipal sewage sludge. Water, Air, & Soil Pollution, 223, 915–931.

    Article  Google Scholar 

  • Ebbers, B., Ottosen, L. M., & Jensen, P. E. (2015). Electrodialytic treatment of municipal wastewater and sludge for the removal of heavy metals and recovery of phosphorus. Electrochimica Acta, 181, 90–99.

    Article  CAS  Google Scholar 

  • Elicker, C., Sanches-Filho, P. J., & Castagno, R. L. (2014). Electroremediation of heavy metals in sewage sludge. Brazilian Journal of Chemical Engineering, 31(02), 365–371.

    Article  Google Scholar 

  • Fang, D., & Zhou, L. X. (2007). Enhanced Cr bioleaching efficiency from tannery sludge with coinoculation of Acidithiobacillus thiooxidans TS6 and Brettanomyces B65 in an air-lift reactor. Chemosphere, 69, 303–310.

    Article  CAS  Google Scholar 

  • Fang, D., Zhang, R., Zhou, L., & Li, J. (2011). A combination of bioleaching and bioprecipitation for deep removal of contaminating metals from dredged sediment. Journal of Hazardous Materials, 192, 226–233.

    CAS  Google Scholar 

  • Fournier, D., Lemieux, R., & Couillard, D. (1998). Essential interactions between Thiobacillus ferrooxidans and heterotrophic microorganisms during a wastewater sludge bioleaching process. Environmental Pollution, 101, 303–309.

    Article  CAS  Google Scholar 

  • Franzetti, A., Gandolfi, I., Fracchia, L., Van Hamme, J., Gkorezis, P., Marchant, R., & Banat, I. M. (2014). Biosurfactant use in heavy metal removal from industrial effluents and contaminated sites. In N. Kosaric & F. Vadar-Sukan (Eds.), Biosurfactants: Production and utilization—Processes, technologies, and economics (2nd ed.). Nova Iorque: CRC Press.

    Google Scholar 

  • Fuerhacker, M., Haile, T. M., Kogelnig, D., Stojanovic, A., & Keppler, B. (2012). Application of ionic liquids for the removal of heavy metals from wastewater and activated sludge. Water Science & Technology, 65(10), 1765–1773.

    Article  CAS  Google Scholar 

  • Jjemba, P. K. (2005). Bioavailability of metals and metalloids in terrestrial environments. In I. Ahmad, S. Hayat, & J. Pichtel (Eds.), Heavy metal contamination of soil: Problems and remedies (pp. 25–41). New Hampshire: Science Publishers.

    Google Scholar 

  • Kelessidis, A., & Stasinakis, A. S. (2012). Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Management, 32, 1186–1195.

    Article  CAS  Google Scholar 

  • Lawniczak, L., Marecik, R., & Chrzanowski, L. (2013). Contributions of biosurfactants to natural or induced bioremediation. Applied Microbiology and Biotechnology, 97, 2327–2339.

    Article  CAS  Google Scholar 

  • Li, L., Xu, Z. R., Zhang, C., Bao, J., & Dai, X. (2012). Quantitative evaluation of heavy metals in solid residues from sub- and super- critical water gasification of sewage sludge. Bioresource Technonogy, 121, 169–175.

    Article  CAS  Google Scholar 

  • Maier, R. M., Neilson, J. W., Artiola, J. F., Jordan, F. L., Glenn, E. P., & Descher, S. M. (2001). Remediation of metal- contaminated soil and sludge using biosurfactant technology. International Journal of Occupational Medicine and Environmental Health, 13(3), 241–248.

    Google Scholar 

  • Mishra, D., & Rhee, Y. H. (2014). Microbial leaching of metals from solid industrial wastes. Journal of Microbiology, 52(01), 1–7.

    Article  CAS  Google Scholar 

  • Niroumand, H., Nazir, R., & Kassim, K. A. (2012). The performance of electrochemical remediation technologies in soil mechanics. International Journal of Electrochemical Science, 7, 5708–5715.

    CAS  Google Scholar 

  • Obrador, A., Rico, M. I., Alvarez, J. M., & Novillo, J. (2001). Infuence of thermal treatment on sequential extraction and leaching behaviour of trace metals in a contaminated sewage sludge. Bioresource Technology, 76, 259–264.

    Article  CAS  Google Scholar 

  • Oliver, B. G., & Cosgrove, E. G. (1974). The efficiency of heavy metal removal by a conventional activated sludge treatment plant. Water Research, 8(11), 869–874.

    Article  CAS  Google Scholar 

  • Pathak, A., Dastidar, M. G., & Sreekrishnan, T. R. (2009). Bioleaching of heavy metals from sewage: a review. Journal of Environmental Management, 90, 2343–2353.

    Article  CAS  Google Scholar 

  • Picardal, F., & Cooper, D. C. (2005). Microbially mediated changes in the mobility of contaminant metals in soils and sediments. In I. Ahmad, S. Hayat, & J. Pichtel (Eds.), Heavy metal contamination of soil: Problems and remedies (pp. 43–88). New Hampshire: Science Publishers.

    Google Scholar 

  • Qi-Tang, W., Pascasie, N., Ce-Hui, M., & Yi, L. (1998). Removal of heavy metals from sewage sludge by low costing chemical method and recycling in agriculture. Journal of Environmental Sciences, 10(01), 122–128.

    Google Scholar 

  • Shi, W., Liu, C., Ding, D., Lei, Z., Yang, Z., Yang, Y., Feng, C., & Zhang, Z. (2013). Immobilization of heavy metals in sewage sludge by using subcritical water technology. Bioresource Technology, 137, 18–24.

    Article  CAS  Google Scholar 

  • Sun, B., Zhao, F. J., Lombi, E., & McGrath, S. P. (2001). Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 113, 111–120.

    Article  CAS  Google Scholar 

  • Suthar, S., Sajwan, P., & Kumar, K. (2014). Vermiremediation of heavy metals in wastewater sludge from paper and pulp industry using earthworm Eisenia fetida. Ecotoxicology and Environmental Safety, 109, 177–184.

    Article  CAS  Google Scholar 

  • Villar, L. D., & Garcia, O., Jr. (2003). Assessment of anaerobic sewage sludge quality for agricultural application after metal bioleaching. Environmental Technology, 24(12), 1553–1559.

    Article  CAS  Google Scholar 

  • Wang, J. Y., Zhang, D. S., Stabnikova, O., & Tay, J. H. (2005). Evaluation of electrokinetic removal of heavy metals from sewage sludge. Journal of Hazardous Materials, 124, 139–146.

    Article  CAS  Google Scholar 

  • Wei, Z., Liu, Y., Ai-He, W., Cai-Wen, W., & Jun, Z. (2014). Advance of sludge producing, hazards and disposal methods. Advanced Meterials Research, 1033–1034, 369–377.

    Google Scholar 

  • Wen, Y.-M., Wang, Q.-P., Tang, C., & Chen, Z.-L. (2012). Bioleaching of heavy metals from sewage sludge by Acidithiobacillus thiooxidans—a comparative study. Journal of Soils and Sediments, 12, 900–908.

    Article  CAS  Google Scholar 

  • Wen, Y.-M., Cheng, Y., Tang, C., & Chen, Z.-L. (2013). Bioleaching of heavy metals from sewage sludge using indigenous iron-oxidizing microorganisms. Journal of Soils and Sediments, 13, 166–175.

    Article  CAS  Google Scholar 

  • Wong, P. K. (2005). Practical issues of land application of biosolids. In I. Ahmad, S. Hayat, & J. Pichtel (Eds.), Heavy metal contamination of soil: Problems and remedies (pp. 1–23). New Hampshire: Science Publishers.

    Google Scholar 

  • Wong, J. W. C., Xiang, L., Gu, X. Y., & Zhou, L. X. (2004). Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source. Chemosphere, 55, 101–107.

    Article  CAS  Google Scholar 

  • Wu, Q., Cui, Y., Li, Q., & Sun, J. (2015). Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA. Journal of Hazardous Materials, 283, 748–754.

    Article  CAS  Google Scholar 

  • Xiang, L., Chan, L. C., Wong, J. W. C. (2000). Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron oxidizing bacteria. Chemosphere, 41, 283–287.

    Article  CAS  Google Scholar 

  • Yang, Z., Zhang, Z., Chai, L., Wang, Y., Liu, Y., & Xiao, R. (2016). Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. Journal of Hazardous Materials, 301, 145–152.

    Article  CAS  Google Scholar 

  • Zhou, J., Zheng, G. Y., Zhou, L. X., Liu, F. W., Zheng, C. C., & Cui, C. H. (2013). Degradation of inhibitory substances in sludge by Galactomyces sp. Z3 and the role of its extracellular polymeric substances in improving bioleaching. Bioresource Technology, 132, 217–223.

    Article  CAS  Google Scholar 

  • Zorpas, A. A., Vlyssides, A. G., Zorpas, G. A., Karlis, P. K., & Arapoglou, D. (2001). Impact of thermal treatment on metal in sewage sludge from the Psittalias wastewater treatment plant, Athens, Greece. Journal of Hazardous Materials, B82, 291–298.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thanks the Programa de Pós Graduação em Biotecnologia e Monitoramento Ambiental (Graduate Program in Biotechnology and Environmental Monitoring) from Universidade Federal de São Carlos campus Sorocaba. This work was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council for Scientific and Technological Development) (CNPq) (process numbers 442833/ 2014-8) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Development Committee for Higher Education Personnel) (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franciele Pereira Camargo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo, F.P., Sérgio Tonello, P., dos Santos, A.C.A. et al. Removal of Toxic Metals from Sewage Sludge Through Chemical, Physical, and Biological Treatments—a Review. Water Air Soil Pollut 227, 433 (2016). https://doi.org/10.1007/s11270-016-3141-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3141-3

Keywords

Navigation