Skip to main content

Advertisement

Log in

Assessing the Chemical and Biological Resilience of Lakes in the Cascade Range to Acidic Deposition

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The potential for atmospheric deposition of sulfur and nitrogen to affect lakes in the Northwestern USA to cause lake acidification was assessed by examining four lakes extending from southern Oregon into the central Washington Cascades. The four lakes were dilute (conductivity 2.2 to 3.6 μS/cm), low ANC (−3 to 11 μeq/L) systems, located in subalpine to alpine settings in designated wilderness areas. The four lakes were cored, dated with 210Pb and 14C, and analyzed for sediment nutrients and diatom remains. Diatom-inferred changes in chemistry were made possible through an earlier project to create a diatom calibration set for the Cascades. The three southern lakes exhibited volcanic inputs of ash or tephra, but diatom stratigraphy generally showed only modest responses to these events. None of the lakes exhibited any recent trends in diatom-inferred pH. The most significant finding with respect to paleolimnology was that Foehn Lake, WA, was formed in the twentieth century (1930 ± 7 years), likely as a result of melting of an adjacent snowfield. Current deposition was estimated using the AIRPACT-3 system, and lake chemistry was simulated using the CE-QUAL-W2 hydrodynamic model that had been modified to represent acid-base chemistry. The model simulations showed that the three southern lakes in the transect were insensitive to increases of nitrogen and sulfur until simulated increases reached 300% of current levels. Foehn Lake showed simulated declines of pH and ANC beginning at 50% increases over current deposition of S and N. The three southern lakes are resistant to changes from atmospheric deposition and other disturbances because of long hydraulic residence times, allowing internal processes to neutralize acidic inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnett, H.A., Soros, J.E., & Mast, M.A. (2012). A caveat regarding diatom-inferred nitrogen concentrations in oligotrophic lakes. Journal of Paleolimnology, 47, 277–291

  • Bajracharya, S., & Mool, P. (2010). Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Annals of Glaciology, 50, 81–86.

    Article  Google Scholar 

  • Baker, L. A., Pollman, C. D., & Eilers, J. M. (1988). Alkalinity regulation in softwater Florida lakes. Water Resources Research, 24, 1069.

    Article  CAS  Google Scholar 

  • Baron, J. S., Rueth, H. M., Wolfe, A. M., Nydick, K. R., Allstott, E. J., Minear, J. T., & Moraska, B. (2000). Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems, 3, 352–368.

    Article  CAS  Google Scholar 

  • Bergstrom, A. K., & Jansson, M. (2006). Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology, 12, 635–643.

    Article  Google Scholar 

  • Blett, T. F., Lynch, J. A., Pardo, L. H., Huber, C., Haeuber, R., & Pouyat, R. (2014). FOCUS: a pilot study for national-scale critical loads development in the United States. Environmental Science & Technology, 38, 225–236.

    Google Scholar 

  • Chen, J., Vaughan, J., Avise, J., O’Neill, S., & Lamb, B. (2008). Enhancement and evaluation of the AIRPACT ozone and PM2.5 forecast system for the Pacific Northwest. Journal of Geophysical Research, 113, D14305.

    Article  Google Scholar 

  • Clow, D.W., Streigel, R.G., Nanus, L., Mast, M.A., Campbell, D.H., Krabbenhoft, D.P. (2002). Chemistry of selected high-elevation lakes in seven national parks in the western United States. Water, Air & Soil Pollution: Focus, 139–164.

  • Clymo, R. S. (1967). Control of cation concentration, and in particular of pH, in Sphagnum dominated communities. In J. S. Golterman & R. S. Clymo (Eds.), Chemical environment in the aquatic habitat. Amsterdam: N.V. Noord-Hollandsche Uitgevers Maatschappij.

    Google Scholar 

  • Cornett, R. J., Chant, L. A., & Link, D. (1984). Sedimentation of 210Pb in Laurentian Shield lakes. Water Pollution Journal of Canada, 19, 97–109.

    Google Scholar 

  • Eilers, J. M., Bernert, J. A., Dixit, S. S., Gubala, C. P., & Sweets, P. R. (1996). Processes influencing water quality in a subalpine Cascade mountain lake. Northwest Science, 70, 59–70.

    CAS  Google Scholar 

  • Eilers, J.M., Gubala, C.P., Sweets, P.R., Vache, K.B. (1998). Limnology of Summit Lake, Washington, its acid-base chemistry and paleolimnology. Report to the USDA-Forest Service. 60 pp. + appendices.

  • Fenn, M. E., Ross, C. S., Schilling, S. L., Baccus, W. D., Larrabee, M. A., & Lofgren, R. A. (2013). Atmospheric deposition of nitrogen and sulfur and preferential canopy consumption of nitrate in forests of the Pacific Nowthwest, USA. Forest Ecology and Management, 302, 240–253.

    Article  Google Scholar 

  • Fernandez, P., Rose, N. L., Vilanova, R. M., & Grimalt, J. O. (2002). Spatial and temporal comparison of polycyclic aromatic hydrocarbons and spheroidal carbonaceous particles in remote European lakes. Water, Air & Soil Pollution: Focus, 2, 261–274.

    Article  CAS  Google Scholar 

  • Glew, J. R. (1991). Miniature gravity corer for recovering short sediment cores. Journal of Paleolimnology, 5, 285–287.

    Article  Google Scholar 

  • Glime, J. M., Wetzel, R. G., & Kennedy, B. J. (1982). The effects of bryophytes on succession from alkaline marsh to Sphagnum bog. American Midland Naturalist, 108, 209–223.

    Article  Google Scholar 

  • Heit, M., Tan, Y. L., Klusek, C., & Burke, J. D. (1981). Anthropogenic trace elements and polycyclic aromatic hydrocarbon levels in sediment cores from two lakes in the Adirondack acid lake region. Water, Air & Soil Pollution, 15, 441–464.

    Article  CAS  Google Scholar 

  • Henriksen, A., & Posch, M. (2001). Steady-state models for calculating critical loads of acidity for surface waters. Water, Air & Soil Pollution: Focus, 1, 375–398.

    Article  CAS  Google Scholar 

  • Henriksen, A., Kamari, J., Posch, M., & Wilander, A. (1992). Critical loads of acidity: Nordic surface waters. Ambio, 21, 356–363.

    Google Scholar 

  • Kats, L. B., & Ferrer, R. P. (2003). Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Diversity and Distributions, 9, 99–110.

    Article  Google Scholar 

  • Koinig, K. A., Schmidt, R., Sommaruga-wogath, S., Tessadri, R., & Psenner, R. (1998). Climate change as the primary cause for pH shifts in a high alpine lake. Water, Air & Soil Pollution, 104, 167–180.

    Article  CAS  Google Scholar 

  • Krabbenhoft, D. P., Olson, M. L., Dewild, J. F., Clow, D. W., Streigel, R. G., Dornblaser, M. M., & Vanmetre, P. (2002). Mercury loading and methylmercury production and cycling in high-altitude lakes from the western United States. Water, Air & Soil Pollution: Focus, 2, 233–249.

    Article  CAS  Google Scholar 

  • Lelyveld, M. (2016). China’s coal-fired power plant glut grows. Radio Free Asia (http://www.rfa.org/english/commentaries/energy_watch/china-coal-fired-power-glut-grows-08012016105217.html).

  • Mote, P. W. (2003). Trends in temperature and precipitation in the Pacific Northwest during the twentieth century. Northwest Science, 77, 271–282.

  • Mote, P. W., Parson, E. A., Hamlet, A. F., Ideker, K. N., Keeton, W. S., Lettenmaier, D. P., Mantua, N. J., Miles, E. L., Peterson, D. W., Peterson, D. L., Slaughter, R., & Snover, A. K. (2003). Preparing for climatic change: the water, salmon, and forests of the Pacific Northwest. Climatic Change, 61, 45–88.

    Article  Google Scholar 

  • Mullineaux, D. R. (1974). Pumice and other pyroclastic deposits in Mount Rainier National Park. Washington: U.S. Govt. Print. Off.. Bulletin 1326.

    Google Scholar 

  • Nelson, P. O. (1991). Cascade mountains. In D. F. Charles (Ed.), Acidic deposition and aquatic ecosystems: regional case studies (pp. 531–563). New York: Springer.

    Chapter  Google Scholar 

  • Saros, J. E., Michel, T. J., Interlandi, S. J., & Wolfe, A. P. (2005). Resource requirements of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes: implications for recent phytoplankton community reorganizations. Canadian Journal of Fisheries and Aquatic Science, 62, 1681–1689.

    Article  CAS  Google Scholar 

  • Saros, J. E., Clow, D. W., Blett, T., & Wolfe, A. P. (2011). Critical nitrogen deposition loads in high-elevation lakes of the western US inferred from paleolimnological records. Water, Air, & Soil Pollution, 216, 193–202.

    Article  CAS  Google Scholar 

  • Schippers, P., Lürling, M., & Scheffer, M. (2004). Increase of atmospheric CO2 promotes phytoplankton productivity. Ecology Letters, 7, 446–451.

    Article  Google Scholar 

  • Shaw, G. D., Cisneros, R., Schweizer, D., Sickman, J. O., & Fenn, M. E. (2014). Critical loads of acid deposition for wilderness lakes in the Sierra Nevada (California) estimated by the steady-state water chemistry model. Water, Air & Soil Pollution, 225, 1804.

    Article  Google Scholar 

  • Sheibley, R. W., Enache, M., Swarzenski, P. W., Moran, P. W., & Foreman, J. R. (2014). Nitrogen deposition effects on diatom communities in lakes from three national parks in Washington state. Water, Air, & Soil Pollution, 225, 1857.

    Article  Google Scholar 

  • Sweets, P. R., Bienert, R. W., Crisman, T., & Binford, M. W. (1990). Paleoecological investigations of recent lake acidification in northern Florida. Journal of Paleolimnology, 4, 103–137.

    Article  Google Scholar 

  • Tabor, R.W., Frizzell, Jr V.A., Booth, D.B., Waitt, R.B., Whetten, J.T., Zartman, R.E. (1993). USGS Miscellaneous investigations series, Map I-1963.

  • Webster, K. E., Newell, A. D., Baker, L. A., & Brezonik, P. L. (1990). Climatically induced rapid acidification of a softwater seepage lake. Nature, 347, 374–376.

    Article  CAS  Google Scholar 

  • Williams, M. W., & Tonnessen, K. A. (2000). Critical loads for inorganic nitrogen deposition in the Colorado Front Range, USA. Ecological Applications, 10, 1648–1665.

    Article  Google Scholar 

  • Williams, J. J., Buetel, M., Nurse, A., Moore, B., Hampton, S. E., & Saros, J. E. (2016). Phytoplankton responses to nitrogen enrichment in Pacific Northwest, USA mountain lakes. Hydrobiologia, 776, 261–276.

    Article  CAS  Google Scholar 

  • Wolfe, A. P., Van Gorp, A. C., & Barron, J. S. (2003). Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): a response to anthropogenic nitrogen deposition. Geobiology, 1, 153–168.

    Article  CAS  Google Scholar 

  • Zdanowicz, C. M., Zielinski, G. A., & Germani, M. S. (1999). Mount Mazama eruption: calendrical age verified and atmospheric impact assessed. Geology, 27, 621–624.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the Air Program, Pacific Northwest (Region 6) under contract # 53-046W-4-0580/AG-046W-P-06-0144 to MaxDepth Aquatics, Inc. Forest Service personnel responsible for contributing to the field sampling included Barry Gall and his assistants. Bob Kotchenruther, USEPA-Reg. X, kindly provided the atmospheric modeling results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Eilers.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 825 kb)

ESM 2

(PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eilers, J., Vache, K., Eilers, B. et al. Assessing the Chemical and Biological Resilience of Lakes in the Cascade Range to Acidic Deposition. Water Air Soil Pollut 227, 432 (2016). https://doi.org/10.1007/s11270-016-3135-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3135-1

Keywords

Navigation