Skip to main content
Log in

Performance and Bacterial Community Shifts During Phosphogypsum Biotransformation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Phosphogypsum (PG) is an industrial waste composed mainly by sulfate, turning it a suitable sulfate source for sulfate-reducing bacteria (SRB). In the present work, the capability of two SRB communities, one enriched from Portuguese PG (culture PG) and the other from sludge from a wastewater treatment plant (culture WWT-1), to use sulfate from PG was compared. In addition, the impact of this sulfate-rich waste in the microbial community was assessed. The highest efficiency in terms of sulfate reduction was observed with culture WWT-1. The bacterial composition of this culture was not significantly affected when sodium sulfate from the nutrient medium was replaced by PG as a sulfate source. Next generation sequencing (NGS) showed that this community was phylogenetically diverse, composed by bacteria affiliated to Clostridium, Arcobacter, and Sulfurospirillum genera and by SRB belonging to Desulfovibrio, Desulfomicrobium, and Desulfobulbus genera. In contrast, the bacterial structure of the community enriched from PG was modified when sodium sulfate was replaced by PG as the sulfate source. This culture, which showed the poorest performance in the use of sulfate from PG, was mainly composed by SRB related to Desulfosporosinus genus. The present work provides new information regarding the phylogenetic characterization of anaerobic bacterial communities with the ability to use PG as sulfate donor, thus, contributing to improve the knowledge of microorganisms suitable to be used in PG bioremediation. Additionally, this paper demonstrates that an alternative to lactate and low-cost carbon source (wine wastes) can be used efficiently for that purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azabou, S., Mechichi, T., & Sayadi, S. (2005). Sulphate reduction from phosphogypsum using a mixed culture of sulphate reducing bacteria. International Biodeterioration & Biodegradation, 56, 236–242. doi:10.1016/j.ibiod.2005.09.003.

    Article  CAS  Google Scholar 

  • Azabou, S., Mechichi, T., Patel, B. K. C., & Sayadi, S. (2007). Isolation and characterization of a mesophilic heavy-metals-tolerant sulphate reducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulphate source. Journal of Hazardous materials, 140, 264–270. doi:10.1016/j.jhazmat.2006.07.073.

    Article  CAS  Google Scholar 

  • Barros, R. J., Jesus, C., Martins, M., & Costa, M. C. (2009). Marble stone processing powder residue as chemical adjuvant for the biologic treatment of acid mine drainage. Process Biochemistry, 44, 477–480. doi:10.1016/j.procbio.2008.12.013.

    Article  CAS  Google Scholar 

  • Binnemans, K., Jones, P. T., Blanpain, B., Gerven, T. V., & Pontikes, Y. (2015). Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. Journal of Cleaner Production, 99, 17–38. doi:10.1016/j.jclepro.2015.02.089.

    Article  CAS  Google Scholar 

  • Boothman, C., Hockin, S., Holmes, D. E., Gadd, G. M., & Lloyd, J. R. (2006). Molecular analysis of a sulphate-reducing consortium used to treat metal-containing effluents. Biometals, 19, 601–609. doi:10.1007/s10534-006-0006-z.

    Article  CAS  Google Scholar 

  • Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J. A., Smith, G., & Knight, R. (2012). Ultra-high throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6, 1621–1624. doi:10.1038/ismej.2012.8.

    Article  CAS  Google Scholar 

  • Carvalho, F. P. (1995). 210Pb and 210Po in sediments and suspended matter in the Tagus estuary, Portugal. local enhancement of natural levels by wastes from phosphate ore processing industry. Science of the Total Environment, 159, 201–214. doi:10.1016/0048-9697(95)04332-U.

    Article  CAS  Google Scholar 

  • Castillo, J., Pérez-López, R., Sarmiento, A. M., & Nieto, J. M. (2012). Evaluation of organic substrates to enhance the sulphate-reducing activity in phosphogypsum. Science of the Total Environment, 439, 106–113. doi:10.1016/j.scitotenv.2012.09.035.

    Article  CAS  Google Scholar 

  • Costa, M. C., Santos, E. S., Barros, R. J., Pires, C., & Martins, M. (2009). Wine wastes as carbon source for biological treatment of acid mine drainage. Chemosphere, 75, 831–836. doi:10.1016/j.chemosphere.2008.12.062.

    Article  CAS  Google Scholar 

  • Cuadri, A. A., Navarroa, F. J., García-Morales, M., & Bolivar, J. P. (2014). Valorization of phosphogypsum waste as asphaltic bitumen modifier. Journal of Hazardous materials, 279, 11–16. doi:10.1016/j.jhazmat.2014.06.058.

    Article  CAS  Google Scholar 

  • Deng, D., Weidhaas, J. L., & Lin, L.-S. (2016). Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage. Journal of Hazardous materials, 305, 200–208. doi:10.1016/j.jhazmat.2015.11.041.

    Article  CAS  Google Scholar 

  • Enamorado, S., Abril, J. M., Delgado, A., Más, J. L., Polvillo, O., & Quintero, J. M. (2014). Implications for food safety of the uptake by tomato of 25 trace-elements from a phosphogypsum amended soil from SW Spain. Journal of Hazardous materials, 266, 122–131. doi:10.1016/j.jhazmat.2013.12.019.

    Article  CAS  Google Scholar 

  • Jasinski, S.M. (2011). Phosphate rock, mineral commodity summaries. In U.S. Geological Survey.

  • Johnson, D. B., & Hallberg, K. B. (2005). Biogeochemistry of the compost bioreactor components of a composite AMD passive remediation system. Science of the Total Environment, 338, 81–93. doi:10.1016/j.scitotenv.2004.09.008.

    Article  CAS  Google Scholar 

  • Martins, M., Faleiro, M. L., Barros, R. J., Veríssimo, A. R., Barreiros, M. A., & Costa, M. C. (2009a). Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage treatment. Journal of Hazardous materials, 166, 706–713. doi:10.1016/j.jhazmat.2008.11.088.

    Article  CAS  Google Scholar 

  • Martins, M., Faleiro, M. L., Barros, R. J., Veríssimo, A. R., & Costa, M. C. (2009b). Biological sulphate reduction using food industry wastes as carbon sources. Biodegradation, 20, 559–567. doi:10.1007/s10532-008-9245-8.

    Article  CAS  Google Scholar 

  • Martins, M., Faleiro, M. L., Silva, G., Chaves, S., Tenreiro, R., & Costa, M. C. (2011a). Dynamics of bacterial community in up-flow anaerobic packed bed system for acid mine drainage treatment using wine wastes as carbon source. International Biodeterioration & Biodegradation, 65, 78–84. doi:10.1016/j.ibiod.2010.09.005.

    Article  CAS  Google Scholar 

  • Martins, M., Santos, E. S., Faleiro, M. L., Silva, G., Chaves, S., Tenreiro, R., Barros, R. J., Barreiros, A., & Costa, M. C. (2011b). Performance and bacterial community shifts during bioremediation of acid mine drainage from two Portuguese mines. International Biodeterioration & Biodegradation, 65, 972–981. doi:10.1016/j.ibiod.2011.07.006.

    Article  CAS  Google Scholar 

  • Martins, M., Assunção, A., Martins, H., Matos, A. P., & Costa, M. C. (2013). Palladium recovery as nanoparticles by an anaerobic bacterial community. Journal of Chemical Technology and Biotechnology, 88, 2039–2045. doi:10.1002/jctb.4064.

    CAS  Google Scholar 

  • Muyzer, G., & Stams, A. J. M. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 6, 441–454. doi:10.1038/nrmicro1892.

    CAS  Google Scholar 

  • Rutherford, P. M., Dudas, M. J., & Samek, R. A. (1994). Environmental impacts of phosphogypsum. Science of the Total Environment, 149, 1–38. doi:10.1016/0048-9697(94)90002-7.

    Article  CAS  Google Scholar 

  • Rzeczycka, M., Suszek, A., & Błaszczyk, M. (2004). Biotransformation of phosphogypsum by sulphate-reducing bacteria in media containing different zinc salts. Polish Journal of Environmental Studies, 13, 209–217.

    CAS  Google Scholar 

  • Sànchez-Andrea, I., Stams, A. J. M., Hedrich, S., Nancucheo, I., & Johnson, D. B. (2015). Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments. Extremophiles, 19, 39–47. doi:10.1007/s00792-014-0701-6.

    Article  Google Scholar 

  • Shao, D., Kang, Y., Wu, S., & Wong, M. H. (2012). Effects of sulfate reducing bacteria and sulfate concentration on mercury methylation in freshwater sediments. Science of the Total Environment, 424, 331–336. doi:10.1016/j.scitotenv.2011.09.042.

    Article  CAS  Google Scholar 

  • Tayibi, H., Choura, M., López, F. A., Alguacil, F. J., & López-Delgado, A. (2009). Environmental impact and management of phosphogypsum. Journal of Environmental Management, 90, 2377–2386. doi:10.1016/j.jenvman.2009.03.007.

    Article  CAS  Google Scholar 

  • Thabet, O., Fardeau, M., Suarez-Nuñez, C., Hamdi, M., Thomas, P., Ollivier, B., & Alazard, D. (2007). Desulfovibrio marinus sp. nov., a moderately halophilic sulphate-reducing bacterium isolated from marine sediments in Tunisia. International Jpurnal of System Evolution Microbiology, 57, 2167–2170. doi:10.1099/ijs.0.64790-0.

    Article  Google Scholar 

  • US EPA. (1999). United States Environmental Protection Agency. Background report on fertilizer use, contaminants and regulations. Office of pollution, Prevention and toxics 747-R-93-003, Washington D. C.

  • Winch, S., Mills, H. J., Kostka, J. E., Fortin, D., & Lean, D. R. (2009). Identification of sulfate-reducing bacteria in methylmercury-contaminated mine tailings by analysis of SSU rRNA genes. FEMS Microbiology Ecology, 68, 94–107. doi:10.1111/j.1574-6941.2009.00658.x.

    Article  CAS  Google Scholar 

  • Wolicka, D., & Borkowski, A. (2009). Phosphogypsum biotransformation in cultures of sulphate reducing bacteria in whey. International Biodeterioration & Biodegradation, 63, 322–327. doi:10.1016/j.ibiod.2008.09.011.

    Article  CAS  Google Scholar 

  • Wolicka, D., & Kowalski, W. (2006). Biotransformation of phosphogypsum on distillery decoctions (preliminary results). Polish Journal of Microbiology, 55, 147–151.

    CAS  Google Scholar 

Download references

Acknowledgments

Funding is by Fundação para a Ciência e a Tecnologia (FCT) through the Joint-Research Protocol Tunisia-Portugal and UID/Multi/04326/2013. The authors also want to acknowledge Quimiparque and the Groupe Chimique Tunisien (GCT) for providing PG samples of Portugal and Tunisia, respectively. The authors also want to acknowledge Jorge Carlier for the support in the molecular biology techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Clara Costa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, M., Assunção, A., Neto, A. et al. Performance and Bacterial Community Shifts During Phosphogypsum Biotransformation. Water Air Soil Pollut 227, 437 (2016). https://doi.org/10.1007/s11270-016-3129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3129-z

Keywords

Navigation