Skip to main content
Log in

Biodegradation of Endosulfan by Bacterial Strain Alcaligenes faecalis JBW4 in Argi-Udic Ferrosols and Hapli-Udic Isohumosols

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The overapplication of endosulfan on crops has resulted in the widespread contamination of soil. In this study, we examine the potential for bioremediation of the bacteria strain Alcaligenes faecalis JBW4 in degrading endsosulfan in soils. Bacteria were inoculated into sterilized and non-sterilized soils (Argi-Udic Ferrosols and Hapli-Udic Isohumosols) spiked with endosulfan. The results obtained from polymerase chain reaction-denaturing gradient gel electrophoresis indicate that JBW4 colonized Argi-Udic Ferrosols and Hapli-Udic Isohumosols successfully. The degradation efficiencies of α and β isomers of endosulfan by JBW4 were higher in Hapli-Udic Isohumosols than in Argi-Udic Ferrosols, and α and β isomers were degraded by 100.0 and 69.8%, respectively. In addition, detected endosulfan metabolites were either endosulfan ether and endosulfan lactone. Results of the single-cell gel electrophoresis assay showed that the toxicity of endosulfan and its metabolites in Hapli-Udic Isohumosols decreased after 77 days when compared to those in Argi-Udic Ferrosols after degradation by JBW4. Strain JBW4 is an excellent bio-remediator through its ability to degrade endosulfan in contaminated Argi-Udic Ferrosols and Hapli-Udic Isohumosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altenburger, A., Ekelund, F., & Jacobsen, C. S. (2010). Protozoa and their bacterial prey colonize sterile soil fast. Soil Biology & Biochemistry, 42, 1636–1639.

    Article  CAS  Google Scholar 

  • Antonious, G. F., & Byers, M. E. (1997). Fate and movement of endosulfan under field conditions. Environmental Toxicology and Chemistry, 16, 644–649.

    Article  CAS  Google Scholar 

  • Beyers, R. A., Woodham, D. W., & Bowman, M. C. G. (1965). Residues on coastal bermuda grass, trash and soil treated with endosulfan. Journal Economic Entomology 58, 160–1.

  • Castillo, J. M., Casas, J., & Romero, E. (2011). Isolation of an endosulfan-degrading bacterium from a coffee farm soil: persistence and inhibitory effect on its biological functions. Science of the Total Environment, 412–413, 20–27.

    Article  Google Scholar 

  • Chakrabarty, S., Rajakumar, A., Raghuveer, K., Sridevi, P., Mohanachary, A., Prathibha, Y., Bashyam, L., Dutta-Gupta, A., & Senthilkumaran, B. (2012). Endosulfan and flutamide, alone and in combination, target ovarian growth in juvenile catfish, Clarias batrachus. Comparative Biochemistry and Physiology - Part C, 155, 491–497.

    CAS  Google Scholar 

  • Dorough, H. W., Huhtanen, K., Marshall, T. C., & Bryant, H. E. (1978). Fate of endosulfan in rats and toxicological considerations of apolar metabolites. Pesticide Biochemistry and Physiology, 8, 241–252.

    Article  CAS  Google Scholar 

  • Fuentes, M. S., Sáez, J. M., Benimeli, C. S., & Amoroso, M. J. (2011). Lindane biodegradation by defined consortia of indigenous Streptomyces strains. Water, Air, & Soil Pollution, 222, 217–231.

    Article  CAS  Google Scholar 

  • Giri, K., & Rai, J. P. N. (2012). Biodegradation of endosulfan isomers in broth culture and soil microcosm by Pseudomonas fluorescens isolated from soil. International Journal of Environmental Studies, 69, 729–742.

    Article  CAS  Google Scholar 

  • Girvan, M. S., Bullimore, J., Pretty, J. N., Osborn, A. M., & Ball, A. S. (2003). Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Applied and Environmental Microbiology, 69, 1800–1809.

    Article  CAS  Google Scholar 

  • Goswami, S., & Singh, D. K. (2009). Biodegradation of α and β endosulfan in broth medium and soil microcosm by bacterial strain Bordetella sp. B9. Biodegradation, 20, 199–207.

    Article  CAS  Google Scholar 

  • Goswami, S., Vig, K., & Dileep, K. (2009). Biodegradation of α and β endosulfan by Aspergillus sydoni. Chemosphere, 75, 883–888.

    Article  CAS  Google Scholar 

  • Jia, H. L., Li, Y. F., Wang, D. G., Cai, D. J., Yang, M., Ma, J. M., & Hu, J. X. (2009). Endosulfan in China 1—gridded usage inventories. Environmental Science and Pollution Research, 16, 295–301.

    Article  CAS  Google Scholar 

  • Jia, H., Liu, L., Sun, B., Wang, D., Su, Y., Kannan, K., & Li, Y. F. (2010). Monitoring and modeling endosulfan in Chinese surface soil. Environmental Science & Technology, 44, 9279–9284.

    Article  CAS  Google Scholar 

  • Kamei, I., Takagi, K., & Kondo, R. (2011). Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsute. Journal of Wood Science, 57, 317–322.

    Article  CAS  Google Scholar 

  • Kataoka, R., & Takagi, K. (2013). Biodegradability and biodegradation pathways of endosulfan and endosulfan sulfate. Applied Microbiology and Biotechnology, 97, 3285–3292.

    Article  CAS  Google Scholar 

  • Kong, L. F., Zhu, S. Y., Zhu, L. S., Xie, H., Su, K. C., Yan, T. X., Wang, J., Wang, J. H., Wang, F. H., & Sun, F. X. (2013a). Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. Journal of Environmental Science, 25, 2257–2264.

    Article  CAS  Google Scholar 

  • Kong, L. F., Zhu, S. Y., Zhu, L. S., Xie, H., Kai, W., Yan, T. X., Wang, J., Wang, J. H., Wang, F. H., & Sun, F. X. (2013b). Colonization of Alcaligenes faecalis strain JBW4 in natural soils and its detoxification of endosulfan. Applied Microbiology and Biotechnology, 98, 1407–1416.

    Article  Google Scholar 

  • Kullman, S. W., & Matsumura, F. (1996). Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Applied and Environmental Microbiology, 62, 593–600.

    CAS  Google Scholar 

  • Kumar, M., & Philip, L. (2006). Adsorption and desorption characteristics of hydrophobic pesticide endosulfan in four Indian soils. Chemosphere, 62, 1064–1077.

    Article  CAS  Google Scholar 

  • Lu, R. K. (2000). Soil agricultural chemistry analytical methods [M]. Beijing: Chinese Agricultural Science and Technology Press.

    Google Scholar 

  • Nikolic, V., Velickovic, S., & Popovic, A. (2014). Biodegradation of polystyrene-graft-starch copolymers in three different types of soil. Environmental Science and Pollution Research, 21, 9877–9886.

    Article  CAS  Google Scholar 

  • Øvreas, L., & Torsvik, V. (1998). Microbial diversity and community structure in two different agricultural soil communities. Microbial Ecology, 36, 303–315.

    Article  Google Scholar 

  • Parkpian, P., Anurakpongsatorn, P., Pakkong, P., & Patrick, W. H. (1998). Adsorption, desorption and degradation of a-endosulfan in tropical soils of Thailand. Journal of Environmental Science and Health. Part. B, 33(3), 211–233.

    Article  Google Scholar 

  • Phillips, T. M., Seech, A. G., Lee, H., & Trevors, J. T. (2005). Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation, 16, 363–392.

    Article  CAS  Google Scholar 

  • Poolpak, T., Pokethitiyook, P., Kruatrachue, M., Arjarasirikoon, U., & Thanwaniwat, N. (2008). Residue analysis of organochlorine pesticides in the Mae Klong river of Central Thailand. Journal of Hazardous Materials, 156, 230–239.

    Article  CAS  Google Scholar 

  • Rao, D., Skovhus, T., Tujula, N., Holmström, C., Dahllöf, I., Webb, J. S., & Kjelleberg, S. (2010). Ability of Pseudoalteromonas tunicata to colonize natural biofilms and its effect on microbial community structure. FEMS Microbiology Ecology, 73, 450–457.

    CAS  Google Scholar 

  • Romero-Aguilar, M., Tovar-Sánchez, E., Sánchez-Salinas, E., Mussali-Galante, P., Sánchez-Meza, J. C., Castrejón-Godínez, M. L., Dantán-González, E., Trujillo-Vera, M. Á., & Ortiz-Hernández, M. L. (2014). Penicillium sp. as an organism that degrades endosulfan and reduces its genotoxic effects. SpringerPlus, 3, 536.

    Article  Google Scholar 

  • Singh, N. S., & Singh, D. K. (2011). Biodegradation of endosulfan and endosulfan sulfate by Achromobacter xylosoxidans strain C8B in broth medium. Biodegradation, 22, 845–857.

    Article  CAS  Google Scholar 

  • Singh, V., & Singh, N. (2014). Uptake and accumulation of endosulfan isomers and its metabolite endosulfan sulfate in naturally growing plants of contaminated area. Ecotoxicology and Environmental Safety, 104, 189–193.

    Article  CAS  Google Scholar 

  • Sutherland, T. D., Weir, K. M., Lacey, M. J., Horne, I., Russell, R. J., & Oakeshott, J. G. (2002). Enrichment of a microbial culture capable of degrading endosulphate, the toxic metabolite of endosulfan. Journal of Applied Microbiology, 92, 541–548.

    Article  CAS  Google Scholar 

  • Svartz, G. V., Wolkowicz, R. H., & Coll, C. S. P. (2014). Toxicity of endosulfan on embryo-larval development of the South American toad Rhinella arenarum. Environmental Toxicology and Chemistry, 33, 875–881.

    Article  CAS  Google Scholar 

  • Tao, Y. X., Pan, L. Q., Zhang, H., & Tian, S. M. (2013). Assessment of the toxicity of organochlorine pesticide endosulfan in clams Ruditapes philippinarum. Ecotoxicology and Environmental Safety, 93, 22–30.

    Article  CAS  Google Scholar 

  • Thangadurai, P., & Suresh, S. (2014). Biodegradation of endosulfan by soil bacterial cultures. International Biodeterioration & Biodegradation, 94, 38–47.

    Article  CAS  Google Scholar 

  • Varon-Lopez, M., Dias, A. C. F., Fasanella, C. C., Durrer, A., Melo, I. S., Kuramae, E. E., & Andreote, F. D. (2014). Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments. Environmental Microbiology, 16, 845–855.

    Article  CAS  Google Scholar 

  • Wan, M. T., Kuo, J.-N., Buday, C., Schroeder, G., Aggelen, G. V., & Pasternak, J. (2005). Toxicity of α-, β-, (α + β)-endosulfan and their formulated and degradation products to Daphnia magna, Hyalella azteca, Oncophynchus mykiss, Oncophynchus kisutch, and biological implications in streams. Environmental Toxicology and Chemistry, 24, 1146–1154.

    Article  CAS  Google Scholar 

  • Zhan, F. Q., Hou, M., Yang, R., & Long, X. Q. (2013). Identification and colonization of a tomato blight antagonistic bacteria in the study of pot experiment. Xinjiang Agricultural Sciences, 50, 1277–1287.

    CAS  Google Scholar 

  • Zhang, J., Qin, J., Zhao, C. C., Liu, C., & Xie, H. J. (2015). Response of bacteria and fungi in soil microcosm under the presence of pesticide endosulfan. Water, Air, & Soil Pollution, 226, 109.

    Article  Google Scholar 

  • Zhao, C. C., Xie, H. J., Mu, Y., Xu, X. L., Zhang, J., Liu, C., Liang, S., Ngo, H. H., Guo, W. S., Xu, J. T., & Wang, Q. (2014). Bioremediation of endosulfan in laboratory-scale constructed wetlands: effect of bioaugmentation and biostimulation. Environmental Science and Pollution Research, 21, 12827–12835.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the professor of soil and water science, University of Florida, and the student of agricultural science, North Carolina State University for reviewing the manuscript. This study was funded by grants from the National Key Research and Development Plan (No. 2016YFD0800202) and the National Natural Science Foundation of China (No. 21377075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lusheng Zhu or Benying Su.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhu, L., Wang, J. et al. Biodegradation of Endosulfan by Bacterial Strain Alcaligenes faecalis JBW4 in Argi-Udic Ferrosols and Hapli-Udic Isohumosols. Water Air Soil Pollut 227, 425 (2016). https://doi.org/10.1007/s11270-016-3125-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3125-3

Keywords

Navigation