Skip to main content
Log in

Impact of Re-wetting of Forestry-Drained Peatlands on Water Quality—a Laboratory Approach Assessing the Release of P, N, Fe, and Dissolved Organic Carbon

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A laboratory column study with peats from four sites from south-central Finland and two sites from blanket peats in the west of Ireland was established to assess the factors contributing to P, N, Fe, and dissolved organic carbon (DOC) transfer to receiving water courses from restored forestry-drained peatlands. The study indicated that the DOC and Fe release from re-wetted peats are likely governed by the amount of Fe in peat and the degree of Fe reduction upon re-wetting. In contrast to our other hypothesis concerning DOC, high degradability of organic matter was not related to high DOC release. Nitrate release was found to largely cease along with oxygen depletion, but ammonium release was considerable from a site with high nitrification potential before wetting. The release of P from anoxic peat was complicated in the sense that it appeared to be controlled by many factors simultaneously. In the nutrient-poor sites, the P release increased following re-wetting, probably because of their high easily soluble peat P content and low Al and Fe content, resulting in high anoxic P mobilization, but limited re-sorption of the mobilized P. Among the three nutrient-rich sites, there was either no P release upon re-wetting or higher P release than from the nutrient-poor sites. Low risk for P release following re-wetting in nutrient-rich sites was associated with low content in peat of easily soluble P and a high molar Fe/P ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA. (1998). Standard methods for examination of water and wastewater (19th ed.). Washington: American public health association.

    Google Scholar 

  • Asam, Z., Kaila, A., Nieminen, M., Sarkkola, S., O’Driscoll, C., O’Connor, M., et al. (2012). Assessment of phosphorus retention efficiency of blanket peat buffer areas using a laboratory flume approach. Ecological Engineering, 49, 160–169. doi:10.1016/j.ecoleng.2012.08.020.

    Article  Google Scholar 

  • Borggaard, O. K., Jörgensen, S. S., Moberg, J. P., & Raben-Lange, B. (1990). Influence of organic matter on phosphate adsorption by aluminium and iron oxides in sandy soils. Journal of Soil Science, 41, 443–449.

    Article  CAS  Google Scholar 

  • Brookes, P. C., Powlson, D. S., & Jenkinson, D. S. (1982). Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry, 14, 319–329.

    Article  CAS  Google Scholar 

  • Chang, S. C., & Jackson, M. L. (1957). Fractionation of soil phosphorus. Soil Science, 84, 133–144.

    Article  CAS  Google Scholar 

  • Chardon, W. J., Aalderink, G. H., & van der Salm, C. (2007). Phosphorus leaching from cow manure patches on soil columns. Journal of Environmental Quality, 36, 17–22.

    Article  CAS  Google Scholar 

  • Cleveland, C. C., & Liptzin, D. (2007). C: N: P stoichiometry in soil: is there a ‘Redfield ratio’ for the microbial biomass? Biogeochemistry, 85, 235–252. doi:10.1007/s10533-007-9132-0.

    Article  Google Scholar 

  • Culley, J. L. B., Bolton, E. F., & Bernyk, V. (1983). Suspended solids and phosphorus loads from a clay soil: I. Plot studies. Journal of Environmental Quality, 12, 493–498.

    Article  Google Scholar 

  • Darke, A. K., & Walbridge, M. R. (2000). Al and Fe biogeochemistry in a floodplain forest: implications for P retention. Biogeochemistry, 51, 1–32.

    Article  CAS  Google Scholar 

  • EU. (2011). Our life in insurance, our natural capital: an EU biodiversity strategy to 2020. COM 244, 17.

    Google Scholar 

  • Forsmann, D. M., & Kjaergaard, C. (2014). Phosphorus release from anaerobic peat soils during convective discharge—effect of soil Fe:P molar ratio and preferential flow. Geoderma, 223–225, 21–32. doi:10.1016/j.geoderma.2014.01.025.

    Article  Google Scholar 

  • Grybos, M., Davranche, M., Gruau, G., Petitjean, P., & Pédrot, M. (2009). Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma, 154, 13–19. doi:10.1016/j.geoderma.2009.09.001.

    Article  CAS  Google Scholar 

  • Hartikainen, H. (1979). Phosphorus and its reactions in terrestial soils and lake sediments. The Journal of the Scientific Agricultural Society of Finland, 51, 537–624.

    CAS  Google Scholar 

  • Hartikainen, H., Rasa, K., & Withers, P. J. A. (2010). Phosphorus exchange properties of European soils and sediments derived from them. European Journal of Soil Science, 61, 1033–1042. doi:10.1111/j.1365-2389.2010.01295.x.

    Article  CAS  Google Scholar 

  • Jaatinen, K., Fritze, H., Laine, J., & Laiho, R. (2007). Effects of short- and long-term water-level drawdown on populations and activity of aerobic decomposers in a boreal peatland. Global Change Biology, 13, 491–510. doi:10.1111/j.1365-2486.2006.01312.x.

    Article  Google Scholar 

  • Kaila, A., Sarkkola, S., Laurén, A., Ukonmaanaho, L., Koivusalo, H., Xiao, L., et al. (2014). Phosphorus export from drained Scots pine mires after clear-felling and bioenergy harvesting. Forest Ecology and Management, 325, 99–107. doi:10.1016/j.foreco.2014.03.025.

    Article  Google Scholar 

  • Kaila, A., Laurén, A., Sarkkola, S., Koivusalo, H., Ukonmaanaho, L., O’Driscoll, C., et al. (2015). Effect of clear-felling and harvest residue removal on nitrogen and phosphorus export from drained Norway spruce mires in southern Finland. Boreal Environment Research, 20, 693–706.

    Google Scholar 

  • Kiikkilä, O., Smolander, A., & Kitunen, V. (2013). Degradability, molecular weight and adsorption properties of dissolved organic carbon and nitrogen leached from different types of decomposing litter. Plant and Soil, 373, 787–798. doi:10.1007/s11104-013-1837-3.

    Article  Google Scholar 

  • Kjaergaard, C., Heiberg, L., Jensen, H. S., & Hansen, H. C. B. (2012). Phosphorus mobilization in rewetted peat and sand at variable flow rate and redox regimes. Geoderma, 173, 311–321. doi:10.1016/j.geoderma.2011.12.029.

    Article  Google Scholar 

  • Kleinman, P. J. A., Sharpley, A. N., Wolf, A. M., Beegle, D. B., & Moore, P. A. (2002). Measuring water-extractable phosphorus in manure as an indicator of phosphorus in runoff. Soil Science Society of American Journal, 66, 2009–2015.

    Article  CAS  Google Scholar 

  • Koskinen, M., Sallantaus, T., & Vasander, H. (2011). Post-restoration development of organic carbon and nutrient leaching from two ecohydrologically different peatland sites. Ecological Engineering, 37, 1008–1016. doi:10.1016/j.ecoleng.2010.06.036.

    Article  Google Scholar 

  • Laiho, R. (1997). Plant biomass dynamics in drained mires in southern Finland—implication for carbon and nutrient balance. Dissertation, University of Helsinki. The Finnish Forest Research Institute, Research papers, 631, 1–53.

    Google Scholar 

  • Martikainen, P. J., & Palojärvi, A. (1990). Evaluation of the fumigation-extraction method for the determination of microbial C and N in a range of forest soils. Soil Biology and Biochemistry, 22, 797–802.

    Article  CAS  Google Scholar 

  • Meissner, R., Leinweber, P., Rupp, H., Shenker, M., Litaor, M. I., Robinson, S., Schlichting, A., & Koehn, J. (2008). Mitigation of diffuse phosphorus pollution during rewetting of fen peat soils: a trans-European case study. Water Air and Soil Pollution, 188, 111–126. doi:10.1007/s11270-007-9528-4.

    Article  CAS  Google Scholar 

  • Moore, T. R., & Dalva, M. (1993). The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. European Journal of Soil Science, 44, 651–664.

    Article  CAS  Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Nieminen, M. (2003). Effects of clear-cutting and site preparation on water quality from a drained Scots pine mire in southern Finland. Boreal Environment Research, 8, 53–59.

    CAS  Google Scholar 

  • Nieminen, M. (2004). Export of dissolved organic carbon, nitrogen and phosphorus following clear-cutting of three Norway spruce forests growing on drained peatlands in southern Finland. Silva Fennica, 38, 123–132.

    Google Scholar 

  • Nieminen, M., & Jarva, M. (1996). Phosphorus adsorption by peat from drained mires in southern Finland. Scandinavian Journal of Forest Research, 11, 321–326.

    Article  Google Scholar 

  • Nieminen, M., & Penttilä, T. (2004). Inorganic and organic phosphorus fractions in peat from drained mires in northern Finland. Silva Fennica, 38, 243–252.

    Google Scholar 

  • Nieminen, M., Koskinen, M., Sarkkola, S., Laurén, A., Kaila, A., Kiikkilä, O., et al. (2015). Dissolved organic carbon export from harvested peatland forests with differing site characteristics. Water Air and Soil Pollution, 226, 1–12. doi:10.1007/s11270-015-2444-0.

    Article  CAS  Google Scholar 

  • Paavilainen, E., & Päivänen, J. (1995). Peatland forestry: ecology and principles. Berlin: Springer.

    Book  Google Scholar 

  • Peltovuori, T., & Soinne, H. (2005). Phosphorus solubility and sorption in frozen, air-dried and field-moist soil. European Journal of Soil Science, 56, 821–826.

    CAS  Google Scholar 

  • Priha, O., & Smolander, A. (1997). Microbial biomass and activity in soil and litter under Pinus sylvestris, Picea abies and Betula pendula at originally similar field afforestation sites. Biology and Fertility of Soils, 24, 45–51.

    Article  CAS  Google Scholar 

  • Psenner, R., Pucsko, R., & Sager, M. (1984). Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten: Versuch einer Definition ökologisch wichtiger Fraktionen. Archiv für Hydrobiologie, Supplement, 70, 111–155.

    CAS  Google Scholar 

  • Qualls, R. G., & Haines, B. L. (1991). Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem. Soil Science Society of American Journal, 55, 1112–1123.

    Article  Google Scholar 

  • Rodgers, M., O’Connor, M., Healy, M. G., O’Driscoll, C., Nieminen, M., Poole, R., et al. (2010). Phosphorus release from forest harvesting on an upland blanket peat catchment. Forest Ecology and Management, 260, 2241–2248. doi:10.1016/j.foreco.2010.09.037.

    Article  Google Scholar 

  • Russow, R., Tauchnitz, N., Spott, O., Mothes, S., Bernsdorf, S., & Meissner, R. (2013). Nitrate turnover in a peat soil under drained and rewetted conditions: results from a [15N]nitrate-bromide double-tracer study. Isotopes in Environmental and Health Studies, 49, 438–453. doi:10.1080/10256016.2013.831089.

    Article  CAS  Google Scholar 

  • Sallantaus, T. (2004). Hydrochemical impacts set constraints on mire restoration. In J. Päivänen (Ed.), Wise use of peatlands, proceedings of the 12th International Peat Congress, Tampere, Finland, 6-11 June 2014 (Vol. 1, pp. 68–73). International Peat Society.

    Google Scholar 

  • Sharpley, A. N., Tillman, R. W., & Syers, J. K. (1977). Use of laboratory extraction data to predict losses of dissolved inorganic phosphate in surface runoff and tile drainage. Journal of Environmental Quality, 6, 33–36.

    Article  CAS  Google Scholar 

  • Shenker, M., Seitelbach, S., Brand, S., Haim, A., & Litaor, M. I. (2005). Redox reactions and phosphorus release in re-flooded soils of an altered wetland. European Journal of Soil Science, 56, 515–525. doi:10.1111/j.1365-2389.2004.00692.x.

    Article  CAS  Google Scholar 

  • Urbanová, Z., Picek, T., & Bárta, J. (2011). Effect of peat re-wetting on carbon and nutrient fluxes, greenhouse gas production and diversity of methanogenic archaeal community. Ecological Engineering, 37, 1017–1026. doi:10.1016/j.ecoleng.2010.07.012.

    Article  Google Scholar 

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707.

    Article  CAS  Google Scholar 

  • Vasander, H., & Laine, J. (2008). Site type classification on drained peatlands. In R. Korhonen, L. Korpela, & S. Sarkkola (Eds.), Finland-Fenland—research and sustainable utilisation of mires and peat (pp. 952–978). Finnish Peatland Society and Maahenki Ltd.

    Google Scholar 

  • Vasander, H., Tuittila, E.-S., Lode, E., Lundin, L., Ilomets, M., Sallantaus, T., et al. (2003). Status and restoration of peatlands in northern Europe. Wetlands Ecology and Management, 11, 51–63.

    Article  CAS  Google Scholar 

  • Wang, H., Richardson, C. J., & Ho, M. (2015). Dual controls on carbon loss during drought in peatlands. Nature Climate Change, 5, 584–587. doi:10.1038/NCLIMATE2643.

    Article  CAS  Google Scholar 

  • Withers, P. J. A., Clay, S. D., & Breeze, V. G. (2001). Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge. Journal of Environmental Quality, 30, 180–188.

    Article  CAS  Google Scholar 

  • Zak, D., & Gelbrecht, J. (2007). The mobilisation of phosphorus, organic carbon and ammonium in the initial stage of fen rewetting (a case study from NE Germany). Biogeochemistry, 85, 141–151. doi:10.1007/s10533-007-9122-2.

    Article  CAS  Google Scholar 

  • Zak, D., Gelbrecht, J., Wagner, C., & Steinberg, C. E. W. (2008). Evaluation of phosphorus mobilization potential in rewetted fens by an improved sequential chemical extraction procedure. European Journal of Soil Science, 59, 1191–1201. doi:10.1111/j.1365-2389.2008.01081.x.

    Article  CAS  Google Scholar 

  • Zak, D., Wagner, C., Payer, B., Augustin, J., & Gelbrecht, J. (2010). Phosphorus mobilization in rewetted fens: the effect of altered peat properties and implications for their restoration. Ecological Applications, 20, 1336–1349. doi:10.1890/08-2053.1.

    Article  Google Scholar 

  • Zak, D., Meyer, N., Cabezas, A., Gelbrecht, J., Mauersberger, R., Tiemeyer, B., et al. (2015). Topsoil removal to minimize internal eutrophication in rewetted peatlands and to protect downstream systems against phosphorus pollution: a case study from NE Germany. Ecological Engineering. doi:10.1016/j.ecoleng.2015.12.030.

    Google Scholar 

Download references

Acknowledgments

Funding from the Maj and Tor Nessling Foundation, the Niemi Foundation, and the VALUE (Integrated Catchment and Water Resources Management) Doctoral Program is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Nieminen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaila, A., Asam, Z., Koskinen, M. et al. Impact of Re-wetting of Forestry-Drained Peatlands on Water Quality—a Laboratory Approach Assessing the Release of P, N, Fe, and Dissolved Organic Carbon. Water Air Soil Pollut 227, 292 (2016). https://doi.org/10.1007/s11270-016-2994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2994-9

Keywords

Navigation