Skip to main content
Log in

Reduction of Nitrate in Secondary Effluent of Wastewater Treatment Plants by Fe0 Reductant and Pd–Cu/Graphene Catalyst

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Nitrate reduction has attracted considerable attention from wastewater in wastewater management because total nitrogen (TN), in which nitrate (NO3 ) is dominant in the effluent of most wastewater treatment plants, cannot meet the requirement of Chinese wastewater discharge standard (<15 mg/L). In this study, the novel graphene–supported palladium–copper catalyst (Pd–Cu/graphene) with Fe0 reductant was investigated in the advanced treatment of nitrate. Series of specific operational conditions (such as mass ratio of Pd:Cu, catalyst amounts, reaction time, and pH of solution) were optimized for nitrate reduction in the artificial solution, and then, the selected optimal conditions were further applied for investigating the nitrate elimination of real effluent of a wastewater treatment plant in Beijing, China. Results indicated that 82 % of nitrate removal and 66 % of N2 selectivity could be obtained under the optimum condition: 5 g/L Fe0, 3:1 mass ratio (Pd:Cu), 4 g/L catalyst, 2 h reaction time, and pH 5.1. Finally, the nitrate catalytic reduction mechanism was also analyzed and interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aristizábal, A., Contreras, S., Barrabés, N., Llorca, J., Tichit, D., & Medina, F. (2011). Catalytic reduction of nitrates in water on Pt promoted Cu hydrotalcite–derived catalysts: effect of the Pt–Cu alloy formation. Applied Catalysis B: Environmental, 110, 58–70.

    Article  Google Scholar 

  • Barrabés, N., Dafinov, A., Medina, F., & Sueiras, J. E. (2010). Catalytic reduction of nitrates using Pt/CeO2 catalysts in a continuous reactor. Catalysis Today, 149, 341–347.

    Article  Google Scholar 

  • Bourlinos, A. B., Gournis, D., & Petridis, D. (2003). Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir, 19, 6050–6055.

    Article  CAS  Google Scholar 

  • Chen, Y. X., Zhan, Y., & Chen, G. H. (2003). Appropriate conditions or maximizing catalytic reduction efficiency of nitrate into nitrogen gas in groundwater. Water Research, 37, 2489–2495.

    Article  CAS  Google Scholar 

  • Chen, Y. M., Li, C. W., & Chen, S. S. (2005). Fluidized zero–valent iron bed reactor for nitrate removal. Chemosphere, 59(6), 753–759.

    Article  CAS  Google Scholar 

  • Choi, E. K., Park, K. H., Lee, H. B., Misun, C., & Samyoung, A. (2013). Formic acid as an alternative reducing agent for the catalytic nitrate reduction in aqueous media. Journal of Environmental Sciences, 25(8), 1696–1702.

    Article  CAS  Google Scholar 

  • Daniela, C., Marcano, Dmitry, V., Kosynkin, & Jacob, M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806–4814.

    Article  Google Scholar 

  • Deganello, F., Liotta, L. F., Macaluso, A., Venezia, A. M., & Deganello, G. (2000). Catalytic reduction of nitrates in water solution on pumice-supported Pd–Cu catalysts. AppIied Catalysis B: Environmental, 24, 265–273.

    Article  CAS  Google Scholar 

  • Dodouche, I., Barbosa, D. P., Rangel, M. D., & Epron, F. (2009). Palladium–tin catalysts on conducting polymers for nitrate removal. AppIied Catalysis B: Environmental, 93, 50–55.

    Article  CAS  Google Scholar 

  • Epron, F., Gauthard, F., Pineda, C., & Barbier, J. (2001). Catalytic reduction of nitrate and nitrite on Pt–Cu/Al2O3 catalysts in aqueous solution: role of the interaction between copper and platinum in the reaction. Journal of Catalysis, 198, 309–318.

    Article  CAS  Google Scholar 

  • Fan, X. L., Franch, C., & Palomares, E. (2011). Simulation of catalytic reduction of nitrates based on a mechanistic model. Chemical Engineering Journal, 175, 458–467.

    Article  CAS  Google Scholar 

  • Fernandez, N. Y., Maranon, E., Soons, J., & Castrill, L. (2008). Denitrification of wastewater containing high nitrate and calcium concentrations. Bioresource Technology, 99, 7976–7981.

    Article  Google Scholar 

  • Gao, W. L., Guan, N. J., Chen, J. X., Guan, X. X., Jin, R. C., Zeng, H. S., Liu, Z. G., & Zhang, F. X. (2003). Titania supported Pd–Cu bimetallic catalyst for the reduction of nitrate in drinking water. AppIied Catalysis B: Environmental, 46, 341–351

  • Gao, W. L., Chen, J. X., Guan, X. X., Jin, R. C., Zhang, F. X., & Guan, N. J. (2004). Catalytic reduction of nitrite ions in drinking water over Pd–Cu/TiO2 bimetallic catalyst. Catalysis Today, 93–95, 333–339.

    Article  Google Scholar 

  • Gautron, E., Garron, A., Bost, F., & Epron, F. (2003). On the use of polypyrrole-supported Pd-Cu catalysts for nitrate reduction. Catalysis Communication, 4, 435–439.

    Article  CAS  Google Scholar 

  • Gavagnin, R., Biasetto, L., Pinna, F., & Strukul, G. (2002). Nitrate removal in drinking waters: the effect of tin oxides in the catalytic hydrogenation of nitrate by Pd/SnO2 catalysts. AppIied Catalysis B: Environmental, 38, 91–99.

    Article  CAS  Google Scholar 

  • Hoerold, S., Tacke, T., & Vorlop, K. D. (1993). Catalytic removal of nitrate and nitrite from drinking water–1: screening for hydrogenation catalyst and influence of reaction conditions on activity and selectivity. Environmental Technology, 14, 931–945.

    Article  CAS  Google Scholar 

  • Höller, V., Râdevik, K., Yuranov, I., Kiwi-Minsker, L., & Renken, A. (2001). Reduction of nitrite-ions in water over Pd-supported on structured fibrous materials. Applied Catalysis B: Environmental, 32(3), 143–150.

    Article  Google Scholar 

  • Huang, Y. H., & Zhang, T. C. (2004). Effects of low pH on nitrate reduction by iron powder. Water Research, 38, 2631–2642.

    Article  CAS  Google Scholar 

  • Huang, C. P., Wang, H. W., & Chiu, P. C. (1998). Nitrate reduction by metallic iron. Water Research, 32, 2257–2264.

    Article  CAS  Google Scholar 

  • Ilinitch, O. M., Nosova, L. V., Gorodetskii, V. V., Ivanov, V. P., Trukhan, S. N., Gribov, E. N., Bogdanov, S. V., & Cuperus, F. P. (2000). Catalytic reduction of nitrate and nitrite ions by hydrogen: investigation of the reaction mechanism over Pd and Pd–Cu catalysts. Journal of Molecular Catalysis A: Chemical, 158, 237–249.

    Article  CAS  Google Scholar 

  • Jasper, J. T., Jones, Z. L., Sharp, J. O., & Sedlak, D. L. (2014). Nitrate removal in shallow, open-water treatment wetlands. Environmental Science & Technology, 48, 11512–11520.

    Article  CAS  Google Scholar 

  • Kim, M. S., Chung, S. H., Yoo, C. J., Lee, M. S., Cho, I. H., Lee, D. W., & Lee, K. Y. (2013). Catalytic reduction of nitrate in water over Pd–Cu/TiO2 catalyst: effect of the strong metal-support interaction (SMSI) on the catalytic activity. Applied Catalysis B: Environmental, 142–143, 354–361.

    Article  Google Scholar 

  • Lemaignen, L., Tong, C., & Begon, V. (2002). Catalytic denitrification of water with palladium–based catalysts supported on activated carbons. Catalysis Today, 75, 43–48.

    Article  CAS  Google Scholar 

  • Maia, M. P., Rodrigues, M. A., & Passos, F. B. (2007). Nitrate catalytic reduction in water using niobia supported palladium–copper catalysts. Catalysis Today, 123, 171–176.

    Article  CAS  Google Scholar 

  • Marchesini, F. A., Irusta, S., Querini, C., & Miro, E. (2008). Nitrate hydrogenation over Pt, In/ Al2O3 and Pt, In/SiO2. Effect of aqueous media and catalyst surface properties upon the catalytic activity. Catalysis Communication, 9, 1021–1026.

    Article  CAS  Google Scholar 

  • Matatov-Meytal, Y., Barelko, V., Yuranov, I., Kiwi-Minsker, L., Renken, A., & Sheintuch, M. (2001). Cloth catalysts for water denitrification II. Removal of nitrates using Pd-Cu supported on glass fibers. Applied Catalysis B: Environmental, 31, 233–240.

    Article  CAS  Google Scholar 

  • Meytal, U. M., & Sheintuch, M. (2005). Activated carbon cloth-supported Pd–Cu catalyst: application for continueous water denitrification. Catalysis. Today, 102, 121–127.

  • Neyertz, C., Marchesini, F. A., Boix, A., Miró, E., & Querini, C. A. (2010). Catalytic reduction of nitrate in water: promoted palladium catalysts supported in resin. Applied Catalysis A: General, 372, 40–47.

    Article  CAS  Google Scholar 

  • Nurhidayatullaili, M. J., & Samira, B. (2015). Graphene supported heterogeneous catalysts: an overview. International Journal of Hydrogen Energy, 40, 948–979.

    Article  Google Scholar 

  • Olívia, S. G. P., Soares, José, J. M., Órfão, A., Manuel, F. R., & Pereira. (2011). Nitrate reduction in water catalysed by Pd–Cu on different supports. Desalination, 279, 367–374.

    Article  Google Scholar 

  • Pintar, A. (2003). Catalytic processes for the purification of drinking water and industrial effluents. Catalysis Today, 77, 451–465.

    Article  CAS  Google Scholar 

  • Pintar, A., Batista, J., Levec, J., & Kajiuchi, T. (1996). Kinetics of the catalytic liquid-phase hydrogenation of aqueous nitrate solutions. Applied Catalysis B: Environmental, 11, 81–89.

  • Pintar, A., Batista, J., & Musevic, I. (2004). Palladium–copper and palladium–tin catalysts in the liquid phase nitrate hydrogenation in a batch-recycle reactor. Applied Catalysis B: Environmental, 52, 49–60.

    Article  CAS  Google Scholar 

  • Puckett, L. J. (1995). Identifying the major sources of nutrient water pollution. Environmental Science & Technology, 29, 408A–414A.

    Article  CAS  Google Scholar 

  • Rim, S., Suela, K., Tobias, H., Morgan, D., & Saha, B. (2015). Greener synthesis of dimethyl carbonate using a novel ceria-zirconia oxide/graphene nanocomposite catalyst. Applied Catalysis B: Environmental, 168–169, 353–362.

    Google Scholar 

  • Soares, O. S. G. P., Orfao, J. J. M., & Pereira, M. F. R. (2008). Activated carbon supported metal catalysts for nitrate and nitrite reduction in water. Catalysis Letters, 126, 253–260.

    Article  CAS  Google Scholar 

  • Strukul, G., Pinna, F., Marella, M., Meregalli, L., & Tomaselli, M. (1996). Sol–gel palladium catalysts for nitrate and nitrite removal from drinking water. Catalysis Today, 27, 209–214.

    Article  CAS  Google Scholar 

  • Strukul, G., Gavagnin, R., & Pinna, F. (2000). Use of palladium based catalyst in the hydrogenation of nitrates in drinking water: from powders to membranes. Catalysis Today, 55, 139–149.

  • Vorlop, K. D., & Tacke, T. (1989). 1st steps towards noble–metal catalyzed removal of nitrate and nitrite from drinking-water. Chemie Ingenieur Technik, 61, 836–837.

    Article  CAS  Google Scholar 

  • Wang, D. (2013). Study on removal of nitrate and nitrite in groundwater by reduced iron powder. Master Thesis, Northeast Forestry University: China.

  • Wang, Y., Qu, J. H., & Liu, H. J. (2007). Effect of liquid property on adsorption and catalytic reduction of nitrate over hydrotalcite-supported Pd–Cu catalyst. Journal of Molecular Catalysis A: Chemical, 272, 31–37.

    Article  CAS  Google Scholar 

  • Wang, K. P., Li, M. M., Xu, Q. Q., Guo, J. S., Wang, C. Y., & Zhao, Y. (2011). Catalytic reduction of nitrate in water over Pd–Cu/AC catalyst. Technology of Water Treatment, 37(10), 55–59.

    CAS  Google Scholar 

  • Westermann, T., & Melin, T. (2009). Flow through catalytic membrane reactors-principles and applications. Chemical Engineering and Processing, 48, 17–28.

    Article  CAS  Google Scholar 

  • Yoshinaga, Y., Akita, T., Mikami, I., & Okuhara, T. (2002). Hydrogenation of nitrate in water to nitrogen over Pd–Cu supported on active carbon. Journal of Catalysis, 207, 37–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Academic Cooperation Project between University of Science andTechnology Beijing and National Taipei University of Technology. Grant agreement No.TW201603.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zifu Li or Yi-Hung Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, Y., Li, Z., Chen, YH. et al. Reduction of Nitrate in Secondary Effluent of Wastewater Treatment Plants by Fe0 Reductant and Pd–Cu/Graphene Catalyst. Water Air Soil Pollut 227, 111 (2016). https://doi.org/10.1007/s11270-016-2792-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2792-4

Keyword

Navigation