Skip to main content

Advertisement

Log in

Responses of Limagne “Clay/Organic Matter-Rich” Soil Microbial Communities to Realistic Formulated Herbicide Mixtures, Including S-Metolachlor, Mesotrione, and Nicosulfuron

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Soil is a primary resource used by mankind to ensure its needs mainly through agriculture. Its sustainability is regulated by the indigenous organisms it contains such as microorganisms. Current agricultural practices employ mixtures of pesticides to ensure the crops yield and can potentially impair these non-target organisms. However despite this environmental reality, studies dealing the susceptibility of microorganisms to pesticide mixtures are scarce. In this context, we designed a 3-month microcosm study to assess the ecotoxicity of realistic herbicide mixtures of formulated S-metolachlor (Dual Gold Safeneur®), mesotrione (Callisto®), and nicosulfuron (Milagro®) on the abundance, the diversity, and the activities of microorganisms from a “clay/organic matter-rich” soil, with a particular attention given to N-cycle communities. These communities appeared to be quite resistant to realistic mixtures even if transient effects occurred on the N-cycle-related communities with an increase of ammonification and an inhibition of nitrification as a short-term effect, followed by an increase of denitrification and an accumulation of nitrates. As nitrates are known to be highly leachable with a strong pollution potential, intensive studies should be carried out at field level to conclude on this potential accumulation and its consequences. Moreover, these data now need to be compared with other agricultural soils receiving these herbicide mixtures in order to bring general conclusion on such practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Accinelli, C., Screpanti, C., Dinelli, G., & Vicari, A. (2002). Short-time effects of pure and formulated herbicides on soil microbial activity and biomass. International Journal of Environmental Analytical Chemistry, 82, 519–527.

    Article  CAS  Google Scholar 

  • Bending, G. D., Lincoln, S. D., & Edmondson, R. N. (2006). Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties. Environmental Pollution Barking Essex, 139, 279–287. 1987.

    Article  CAS  Google Scholar 

  • Bending, G. D., Rodríguez-Cruz, M. S., & Lincoln, S. D. (2007). Fungicide impacts on microbial communities in soils with contrasting management histories. Chemosphere, 69, 82–88.

    Article  CAS  Google Scholar 

  • Camargo, J. A., & Alonso, A. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32, 831–849.

    Article  CAS  Google Scholar 

  • Carlisle, S. M., & Trevors, J. T. (1986). Effect of the herbicide glyphosate on nitrification, denitrification, and acetylene reduction in soil. Water, Air, and Soil Pollution, 29, 189–203.

    Article  CAS  Google Scholar 

  • Cavigelli, M., & Robertson, G. (2001). Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem. Soil Biology and Biochemistry, 33, 297–310.

    Article  CAS  Google Scholar 

  • Crouzet, O., Batisson, I., Besse-Hoggan, P., Bonnemoy, F., Bardot, C., Poly, F., Bohatier, J., & Mallet, C. (2010). Response of soil microbial communities to the herbicide mesotrione: a dose-effect microcosm approach. Soil Biology and Biochemistry, 42, 193–202.

    Article  CAS  Google Scholar 

  • Crouzet, O., Wiszniowski, J., Donnadieu, F., Bonnemoy, F., Bohatier, J., & Mallet, C. (2013). Dose-dependent effects of the herbicide mesotrione on soil cyanobacterial communities. Archives of Environmental Contamination and Toxicology, 64, 23–31.

    Article  CAS  Google Scholar 

  • Damin, V., & Trivelin, P. (2011). Herbicides Effect on Nitrogen Cycling in Agroecosystems. In Herbicides and Environment, (Dr Andreas Kortekamp)

  • Djigal, D., Baudoin, E., Philippot, L., Brauman, A., & Villenave, C. (2010). Shifts in size, genetic structure and activity of the soil denitrifier community by nematode grazing. European Journal of Soil Biology 46, 112–118.

  • Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1951). A colorimetric method for the determination of sugars. Nature, 168, 167–167.

    Article  CAS  Google Scholar 

  • Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galactosidases in soils. Soil Biology and Biochemistry, 20, 601–606.

    Article  CAS  Google Scholar 

  • Fogg, P., Boxall, A. B. A., & Walker, A. (2003). Degradation of pesticides in biobeds: the effect of concentration and pesticide mixtures. Journal of Agricultural and Food Chemistry, 51, 5344–5349.

    Article  CAS  Google Scholar 

  • Graymore, M., Stagnitti, F., & Allinson, G. (2001). Impacts of atrazine in aquatic ecosystems. Environment International, 26, 483–495.

    Article  CAS  Google Scholar 

  • Hammer, Ø., & Harper, D.A.T. (2008). Paleontological data analysis (John Wiley & Sons).

  • Hernández, M., Jia, Z., Conrad, R., & Seeger, M. (2011). Simazine application inhibits nitrification and changes the ammonia-oxidizing bacterial communities in a fertilized agricultural soil. FEMS Microbiology Ecology, 78, 511–519.

    Article  Google Scholar 

  • Jansson, S. L., Hallam, M. J., & Bartholomew, W. V. (1955). Preferential utilization of ammonium over nitrate by micro-organisms in the decomposition of oat straw. Plant and Soil, 6, 382–390.

    Article  CAS  Google Scholar 

  • Joly, P., Besse-Hoggan, P., Bonnemoy, F., Batisson, I., Bohatier, J., & Mallet, C. (2012). Impact of maize formulated herbicides mesotrione and S-metolachlor, applied alone and in mixture, on soil microbial communities. ISRN Ecologica, 2012, 1–9.

    Article  Google Scholar 

  • Joly, P., Bonnemoy, F., Charvy, J.-C., Bohatier, J., & Mallet, C. (2013). Toxicity assessment of the maize herbicides S-metolachlor, benoxacor, mesotrione and nicosulfuron, and their corresponding commercial formulations, alone and in mixtures, using the Microtox® test. Chemosphere, 93, 2444–2450.

    Article  CAS  Google Scholar 

  • Joly, P., Misson, B., Perrière, F., Bonnemoy, F., Joly, M., Donnadieu-Bernard, F., Aguer, J.-P., Bohatier, J., & Mallet, C. (2014). Soil surface colonization by phototrophic indigenous organisms, in two contrasted soils treated by formulated maize herbicide mixtures. Engl: Ecotoxicol. Lond.

    Google Scholar 

  • Jones, W. J., & Ananyeva, N. D. (2001). Correlations between pesticide transformation rate and microbial respiration activity in soil of different ecosystems. Biology and Fertility of Soils, 33, 477–483.

    Article  CAS  Google Scholar 

  • Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6, 68–72.

    Article  CAS  Google Scholar 

  • Kanissery, R. G., & Sims, G. K. (2011). Biostimulation for the enhanced degradation of herbicides in soil. Applied Environmental Soil Sciences, 2011.

  • Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G. W., Prosser, J. I., Schuster, S. C., & Schleper, C. (2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442, 806–809.

    Article  CAS  Google Scholar 

  • Lemanceau, P., Maron, P.-A., Mazurier, S., Mougel, C., Pivato, B., Plassart, P., Ranjard, L., Revellin, C., Tardy, V., & Wipf, D. (2015). Understanding and managing soil biodiversity: a major challenge in agroecology. Agronomica Sustainable Developmental, 35, 67–81.

    Article  CAS  Google Scholar 

  • Lin, Q., & Brookes, P. C. (1996). Comparison of methods to measure microbial biomass in unamended, ryegrass-amended and fumigated soils. Soil Biology and Biochemistry, 28, 933–939.

    Article  CAS  Google Scholar 

  • Lo, C.-C. (2010). Effect of pesticides on soil microbial community. Journal of Environmental Science and Health. Part. B, 45, 348–359.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Luiz, V., Grossi, R., de Toledo Alves, P.A., Janice, E., & Henrique, S. (2013). Pesticide tank mixes: an environmental point of view. In herbicides—current research and case studies in use, A. Price, ed. (InTech),.

  • Martikainen, E., Haimi, J., & Ahtiainen, J. (1998). Effects of dimethoate and benomyl on soil organisms and soil processes—a microcosm study. Applied Soil Ecology, 9, 381–387.

    Article  Google Scholar 

  • McTavish, H., Fuchs, J. A., & Hooper, A. B. (1993). Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. Journal of Bacteriology 175, 2436–2444.

  • Mitchell, G., Bartlett, D. W., Fraser, T. E., Hawkes, T. R., Holt, D. C., Townson, J. K., & Wichert, R. A. (2001). Mesotrione: a new selective herbicide for use in maize. Pest Management Science 57, 120–128.

  • Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695–700.

    CAS  Google Scholar 

  • Niemi, R. M., Heiskanen, I., Ahtiainen, J. H., Rahkonen, A., Mäntykoski, K., Welling, L., Laitinen, P., & Ruuttunen, P. (2009). Microbial toxicity and impacts on soil enzyme activities of pesticides used in potato cultivation. Applied Soil Ecology, 41, 293–304.

    Article  Google Scholar 

  • Pampulha, M. E., & Oliveira, A. (2006). Impact of an herbicide combination of bromoxynil and prosulfuron on soil microorganisms. Current Microbiology, 53, 238–243.

    Article  CAS  Google Scholar 

  • Puglisi, E. (2012). Response of microbial organisms (aquatic and terrestrial) to pesticides (European Food Safety Authority).

  • Rama Krishna, K., & Philip, L. (2011). Bioremediation of single and mixture of pesticide-contaminated soils by mixed pesticide-enriched cultures. Applied Biochemistry and Biotechnology, 164, 1257–1277.

    Article  CAS  Google Scholar 

  • Ranjard, L., Poly, F., Lata, J.-C., Mougel, C., Thioulouse, J., & Nazaret, S. (2001). Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Applied and Environmental Microbiology, 67, 4479–4487.

    Article  CAS  Google Scholar 

  • Rice, C. W., & Tiedje, J. M. (1989). Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorganisms. Soil Biology and Biochemistry, 21, 597–602.

    Article  CAS  Google Scholar 

  • Salminen, J., Liiri, M., & Haimi, J. (2002). Responses of microbial activity and decomposer organisms to contamination in microcosms containing coniferous forest soil. Ecotoxicology and Environmental Safety, 53, 93–103.

    Article  CAS  Google Scholar 

  • Schimel, J., Balser, T. C., & Wallenstein, M. (2007). Microbial stress-response physiology and its implications for ecosystem function. Ecology, 88, 1386–1394.

    Article  Google Scholar 

  • Tejada, M. (2009). Evolution of soil biological properties after addition of glyphosate, diflufenican and glyphosate + diflufenican herbicides. Chemosphere, 76, 365–373.

    Article  CAS  Google Scholar 

  • Thirup, L., Ekelund, F., Johnsen, K., & Jacobsen, C. S. (2000). Population dynamics of the fast-growing sub-populations of Pseudomonas and total bacteria, and their protozoan grazers, revealed by fenpropimorph treatment. Soil Biology and Biochemistry, 32, 1615–1623.

    Article  CAS  Google Scholar 

  • Throbäck, I. N., Enwall, K., Jarvis, A., & Hallin, S. (2004). Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology Ecology 49, 401–417.

  • Tomlin, C. (1994). The pesticide manual—10th edition (Clive Tomlin).

  • Treusch, A. H., Leininger, S., Kletzin, A., Schuster, S. C., Klenk, H. -P., & Schleper, C. (2005). Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental Microbiology 7, 1985–1995.

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707.

    Article  CAS  Google Scholar 

  • Wainwright, M. (1978). A review of the effects of pesticides on microbial activity in soils. Journal of Soil Science, 29, 287–298.

    Article  CAS  Google Scholar 

  • Wardle, D. A., & Parkinson, D. (1990). Effects of three herbicides on soil microbial biomass and activity. Plant and Soil, 122, 21–28.

    Article  CAS  Google Scholar 

  • White, P. M., Potter, T. L., & Culbreath, A. K. (2010). Fungicide dissipation and impact on metolachlor aerobic soil degradation and soil microbial dynamics. Science of the Total Environment, 408, 1393–1402.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work of P. Joly was supported by a MENRT doctoral fellowship from the French Ministère de l’Education, de la Recherche et de la Technologie. The authors would like to thank I. Batisson for her wise advices on the numerous fingerprinting tools and the INRA Genosol Plateforme for their technical assistance with the ARISA procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Joly.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 91 kb)

ESM 2

(DOCX 86 kb)

ESM 3

(DOCX 229 kb)

ESM 4

(DOCX 191 kb)

ESM 5

(DOCX 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joly, P., Bonnemoy, F., Besse-Hoggan, P. et al. Responses of Limagne “Clay/Organic Matter-Rich” Soil Microbial Communities to Realistic Formulated Herbicide Mixtures, Including S-Metolachlor, Mesotrione, and Nicosulfuron. Water Air Soil Pollut 226, 413 (2015). https://doi.org/10.1007/s11270-015-2683-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2683-0

Keywords

Navigation