Skip to main content
Log in

Copper Speciation in Soil: Time Evolution and Effect of Clay Amendment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Copper bioavailability, specially to plants, is strongly dependent on its chemical form, as for most metals. Copper-contaminated soil can be treated in situ by the addition of minerals such as Na-bentonite, which mixed with surface soil, can transform this pollutant to non-bioavailable forms. In this work, shelter experiments were conducted to study the time evolution of Cu speciation, in pristine soil as well as in amended one. A selective sequential extraction method was employed to determine the metal speciation in the samples. The results show that the major metal fraction is the organic matter-bound one, whereas the exchangeable fraction is very low, even the first day after Cu addition. The time evolution shows a slow decrease of the organic-bound Cu and a corresponding increase of the most stable mineral fractions. With the addition of Na-bentonite to copper-contaminated soil, the most stable mineral fractions increase whereas the organic-bound one decreases, showing essentially similar time dependence of the several metal fractions. Sodium bentonite could be effectively used for remediation of soils polluted with Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Alloway, B. J. (2012). Heavy metals in soils: trace metals and metalloids in soils and their bioavailability (3rd ed.). Dordrecht, Netherlands; New York: Springer.

  • Bergaya, F., & Lagaly, G. (2006). General introduction clays, clay minerals, and clay science. In F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Handbook of Clay Science, Volume 1 (1st edition.). Amsterdam; London: Elsevier Science.

  • Bourgeault, A., Ciffroy, P., Garnier, C., Cossu-Leguille, C., Masfaraud, J.-F., Charlatchka, R., & Garnier, J.-M. (2013). Speciation and bioavailability of dissolved copper in different freshwaters: comparison of modelling, biological and chemical responses in aquatic mosses and gammarids. Science of The Total Environment, 452–453, 68–77. doi:10.1016/j.scitotenv.2013.01.097.

    Article  Google Scholar 

  • Bukka, K., Miller, J. D., & Shabtai, J. (1992). FTIR study of deuterated montmorillonites: structural features relevant to pillared clay stability. Clays and Clay Minerals, 40(1), 92–102. doi:10.1346/CCMN.1992.0400110.

    Article  CAS  Google Scholar 

  • Celis, R., HermosÍn, M. C., & Cornejo, J. (2000). Heavy metal adsorption by functionalized clays. Environmental Science & Technology, 34(21), 4593–4599. doi:10.1021/es000013c.

    Article  CAS  Google Scholar 

  • Covelo, E. F., Vega, F. A., & Andrade, M. L. (2008). Sorption and desorption of Cd, Cr, Cu, Ni, Pb and Zn by a Fibric Histosol and its organo-mineral fraction. Journal of Hazardous Materials, 159(2–3), 342–347. doi:10.1016/j.jhazmat.2008.02.025.

    Article  CAS  Google Scholar 

  • Dhal, B., Thatoi, H. N., Das, N. N., & Pandey, B. D. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. Journal of Hazardous Materials, 250–251, 272–291. doi:10.1016/j.jhazmat.2013.01.048.

    Article  Google Scholar 

  • Environment Canada. (1991). Review and recommendations for Canadian Interim Environmentals Quality Criteria for contaminated sites. Ottawa: IWD-WQB.

  • Ferrari, M., & Lutterotti, L. (1994). Method for the simultaneous determination of anisotropic residual stresses and texture by x‐ray diffraction. Journal of Applied Physics, 76(11), 7246–7255. doi:10.1063/1.358006.

    Article  CAS  Google Scholar 

  • Ferreyroa, G. V., Montenegro, A. C., Tudino, M. B., Lavado, R. S., & Molina, F. V. (2014). Time evolution of Pb(II) speciation in Pampa soil fractions. Chemical Speciation and Bioavailability, 26(4), 210–218.

    Article  Google Scholar 

  • Fonseca, B., Maio, H., Quintelas, C., Teixeira, A., & Tavares, T. (2009). Retention of Cr(VI) and Pb(II) on a loamy sand soil: kinetics, equilibria and breakthrough. Chemical Engineering Journal, 152(1), 212–219. doi:10.1016/j.cej.2009.04.045.

    Article  CAS  Google Scholar 

  • Fontes, M., & dos Santos, G. (2010). Lability and sorption of heavy metals as related to chemical, physical, and mineralogical characteristics of highly weathered soils. Journal of Soils and Sediments, 10(4), 774–786. doi:10.1007/s11368-009-0157-y.

    Article  CAS  Google Scholar 

  • Furnare, L. J., Vailionis, A., & Strawn, D. G. (2005). Polarized XANES and EXAFS spectroscopic investigation into copper(II) complexes on vermiculite. Geochimica et Cosmochimica Acta, 69(22), 5219–5231. doi:10.1016/j.gca.2005.06.020.

    Article  CAS  Google Scholar 

  • Georgopoulos, P. G., Roy, A., Yonone-Lioy, M. J., Opiekun, R. E., & Lioy, P. J. (2001). Environmental copper: its dynamics and human exposure issues. Journal of Toxicology and Environmental Health, Part B, 4(4), 341–394. doi:10.1080/109374001753146207.

    Article  CAS  Google Scholar 

  • Gobierno Argentino. (1993). Régimen de desechos peligrosos, Niveles guia de calidad suelos. Decreto 831/93.

  • Gustafsson, J. P. (2011). Visual Minteq. Visual Basic, Stockholm, Sweden: KTH, Department of Land and Water Resources Engineering.

    Google Scholar 

  • Gu, X., Evans, L. J., & Barabash, S. J. (2010). Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite. Geochimica et Cosmochimica Acta, 74(20), 5718–5728. doi:10.1016/j.gca.2010.07.016.

    Article  CAS  Google Scholar 

  • Hass, A., & Fine, P. (2010). Sequential selective extraction procedures for the study of heavy metals in soils, sediments, and waste materials—a critical review. Critical Reviews in Environmental Science and Technology, 40(5), 365–399. doi:10.1080/10643380802377992.

    Article  CAS  Google Scholar 

  • Kabala, C., Karczewska, A., Szopka, K., & Wilk, J. (2011). Copper, zinc, and lead fractions in soils long-term irrigated with municipal wastewater. Communications in Soil Science and Plant Analysis, 42(8), 905–919. doi:10.1080/00103624.2011.558960.

    Article  CAS  Google Scholar 

  • Lavado, R. S., Zubillaga, M. S., Alvarez, R., & Taboada, M. A. (2004). Baseline levels of potentially toxic elements in pampas soils. Soil and sediment contamination: an international journal, 13(5), 329–339. doi:10.1080/10588330490500383.

    Article  Google Scholar 

  • Lerot, L. (1976). Effect of swelling on the infrared absorption spectrum of montmorillonite. Clays and Clay Minerals, 24(4), 191–199. doi:10.1346/CCMN.1976.0240407.

    Article  CAS  Google Scholar 

  • Liu, S.-H., & Wang, H. P. (2004). In situ speciation studies of copper–humic substances in a contaminated soil during electrokinetic remediation. Journal of Environment Quality, 33(4), 1280–1287. doi:10.2134/jeq2004.1280.

    Article  CAS  Google Scholar 

  • Malandrino, M., Abollino, O., Buoso, S., Giacomino, A., La Gioia, C., & Mentasti, E. (2011). Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite. Chemosphere, 82(2), 169–178. doi:10.1016/j.chemosphere.2010.10.028.

    Article  CAS  Google Scholar 

  • Malhotra, V. M., & Ogloza, A. A. (1989). FTIR spectra of hydroxyls and dehydroxylation kinetics mechanism in montmorillonite. Physics and Chemistry of Minerals, 16(4), 386–393. doi:10.1007/BF00199560.

    Article  CAS  Google Scholar 

  • Mallampati, S. R., Mitoma, Y., Okuda, T., Sakita, S., & Kakeda, M. (2012). Enhanced heavy metal immobilization in soil by grinding with addition of nanometallic Ca/CaO dispersion mixture. Chemosphere, 89(6), 717–723. doi:10.1016/j.chemosphere.2012.06.030.

    Article  CAS  Google Scholar 

  • Ma, Y. B., & Uren, N. C. (1998). Transformations of heavy metals added to soil—application of a new sequential extraction procedure. Geoderma, 84(1–3), 157–168. doi:16/S0016-7061(97)00126-2

  • McGrath, S. P., & Cegarra, J. (1992). Chemical extractability of heavy metals during and after long-term applications of sewage sludge to soil. Journal of Soil Science, 43(2), 313–321.

    Article  CAS  Google Scholar 

  • Musić, S., Santana, G. P., Šmit, G., & Garg, V. K. (1999). 57Fe Mössbauer, FT-IR and TEM observations of oxide phases precipitated from concentrated Fe(NO3)3 solutions. Croatica chemica acta, 72(1), 87–102.

    Google Scholar 

  • Musso, T. B., Parolo, M. E., Pettinari, G., & Francisca, F. M. (2014). Cu(II) and Zn(II) adsorption capacity of three different clay liner materials. Journal of Environmental Management, 146, 50–58. doi:10.1016/j.jenvman.2014.07.026.

    Article  CAS  Google Scholar 

  • Musso, T. B., Roehl, K. E., Pettinari, G., & Vallés, J. M. (2010). Assessment of smectite-rich claystones from Northpatagonia for their use as liner materials in landfills. Applied Clay Science, 48(3), 438–445.

    Article  CAS  Google Scholar 

  • Orsetti, S., Quiroga, M. M., & Andrade, E. M. (2006). Binding of Pb(II) in the system humic acid/goethite at acidic pH. Chemosphere, 65(11), 2313–2321.

    Article  CAS  Google Scholar 

  • Ostrooumov, M., Garduño Monroy, V. H., & Servenay, A. (2005). Mineralogical and geochemical studies of hardened subsurface layers in soils of the Azufres and Atecuaro volcanic calderas, southwestern Mexico. Canadian Journal of Soil Science, 85(5), 611–624. doi:10.4141/S04-057.

    Article  Google Scholar 

  • Rao, C. R. M., Sahuquillo, A., & Sanchez, J. F. L. (2008). A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water, Air, and Soil Pollution, 189(1–4), 291–333. doi:10.1007/s11270-007-9564-0.

    Article  CAS  Google Scholar 

  • Ryu, H., Chung, J. S., Nam, T., Moon, H. S., & Nam, K. (2010). incorporation of heavy metals bioavailability into risk characterization. CLEAN—Soil, Air, Water, 38(9), 812–815. doi:10.1002/clen.201000070.

    Article  CAS  Google Scholar 

  • Sdiri, A., Higashi, T., Hatta, T., Jamoussi, F., & Tase, N. (2011). Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems. Chemical Engineering Journal, 172(1), 37–46. doi:10.1016/j.cej.2011.05.015.

    Article  CAS  Google Scholar 

  • Senesi, N., & Loffredo, E. (2005). Metal ion complexation by soil humic substances. In M. A. Tabatabai & D. L. Sparks (Eds.), Chemical Processes in Soils (pp. 563–617). Madison, Wisconsin: Soil Science Society of America.

    Google Scholar 

  • Sipos, P., Németh, T., Kis, V. K., & Mohai, I. (2008). Sorption of copper, zinc and lead on soil mineral phases. Chemosphere, 73(4), 461–469. doi:10.1016/j.chemosphere.2008.06.046.

    Article  CAS  Google Scholar 

  • Soler-Rovira, P., Madejón, E., Madejón, P., & Plaza, C. (2010). In situ remediation of metal-contaminated soils with organic amendments: role of humic acids in copper bioavailability. Chemosphere, 79(8), 844–849.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (2002). Environmental soil chemistry (2nd ed.). San Diego, CA: Academic Press.

  • Stadler, M., & Schindler, P. W. (1993). Modeling of H+ and Cu2+ adsorption on calcium-montmorillonite. Clays and Clay Minerals, 41(3), 288–296. doi:10.1346/CCMN.1993.0410303.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851. doi:10.1021/ac50043a017.

    Article  CAS  Google Scholar 

  • Undabeytia, T., Nir, S., Rytwo, G., Serban, C., Morillo, E., & Maqueda, C. (2002). Modeling adsorption–desorption processes of Cu on edge and planar sites of Montmorillonite. Environmental Science & Technology, 36(12), 2677–2683. doi:10.1021/es011154x.

    Article  CAS  Google Scholar 

  • Uriu-Adams, J. Y., & Keen, C. L. (2005). Copper, oxidative stress, and human health. Molecular Aspects of Medicine, 26(4–5), 268–298. doi:10.1016/j.mam.2005.07.015.

    Article  CAS  Google Scholar 

  • Wenk, H. R., Matthies, S., & Lutterotti, L. (1994). Texture analysis from diffraction spectra. Materials Science Forum, 157–162, 473–480. doi:10.4028/www.scientific.net/MSF.157-162.473.

    Article  Google Scholar 

  • Wright, R. J., & Stuczynski, T. (1996). Atomic absorption and flame emission spectrometry. In D. L. Sparks (Ed.), Methods of Soil Analysis. Part 3. Chemical Methods (pp. 65–90). Madison, Wisconsin: American Society of Agronomy-Soil Science Society of America.

    Google Scholar 

  • Zhang, J., Dai, J., Wang, R., Li, F., & Wang, W. (2009). Adsorption and desorption of divalent mercury (Hg2+) on humic acids and fulvic acids extracted from typical soils in China. Colloids and surfaces A: physicochemical and engineering aspects, 335(1–3), 194–201.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. P. Leal for his help with mineral characterization. The authors gratefully acknowledge financial support from the Universidad de Buenos Aires, the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina), and the Agencia Nacional de Promoción Científica y Tecnológica, Argentina. M. B. T., R. S. L., and F. V. M. are members of the Carrera del Investigador Científico of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando V. Molina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montenegro, A.C., Ferreyroa, G.V., Parolo, M.E. et al. Copper Speciation in Soil: Time Evolution and Effect of Clay Amendment. Water Air Soil Pollut 226, 293 (2015). https://doi.org/10.1007/s11270-015-2569-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2569-1

Keywords

Navigation