Skip to main content

Advertisement

Log in

Review of Nanotechnology for Soil and Groundwater Remediation: Brazilian Perspectives

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The soil remediation field is still in development in Brazil. Currently, it is not known how many contaminated sites exist across the country; however, due to the country’s large size and its extensive urbanization and industrialization, it can be postulated that the number of contaminated sites must be very high. To remediate these sites, new sustainable technologies should be identified and evaluated. A technology that was born in the 1990s in the USA, and has been fairly investigated, is the use of nanoparticles (NPs) to degrade contaminants in soils and groundwater. This study aims to present a bibliographic review of nanotechnology application to remediation of soils and groundwater, as well as assess the potential of conducting research in this field in Brazil. This paper first presents an overview of the number of contaminated areas identified in the USA and Europe. The basic concepts of nanomaterials followed by classification, synthesis, and characterization of nanomaterials are explained. The main types of contaminants for which the technique was already applied as well as the chemical reactions between them and NPs are presented. The issues related to delivery and migration of NPs in the porous media is discussed. Concerns regarding the toxicity of nanomaterials are discussed. The in situ applications of nanomaterials for contaminated site remediation are presented. It is concluded that the issues involving remediation of soils and groundwater are site specific and it is not possible to directly transfer knowledge gained from sedimentary soils of temperate climates for residual soils found in tropical and subtropical climate regions. The research on nanotechnology for site remediation in Brazil has just begun, and more efforts are required from the technical and academic professionals to develop nanotechnology as practical technology for the remediation of contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Academic Publishers, 249–274 Grieger, K. D., Fjordboge, A., Hartmann, N. B., Eriksson, E., Bjerg P. L. & Baun, A. (2010). Environmental benefits and risks of zerovalent iron nanoparticles, (nZVI) for in-situ remediation: Risk mitigation or trade-off? Journal of Contaminant Hydrology, 118(3–4), 165–183.

  • Almeelbi, T., & Bezbaruah, A. (2012). Aqueous phosphate removal using nanoscale zero-valent iron. Journal of Nanopartarticles Research, 14, 900. doi:10.1007/s11051-012-0900-y.

    Google Scholar 

  • Alonso, F., Beletskaya, I. P. & Yus, M. (2002). Metal-mediated reductive hydrodehalogenation of organic halides. Chemical Review, 102(11), 4009–4091.

  • Ambashta, R. D., Repo, E. & Sillanpää, M. (2011). Degradation of tributyl phosphate using nanopowders of iron and iron-nickel under influence of static magnetic field. Industrial Engineering Chemical Research, 50(21), 11771–11777.

  • Arnold, W. A. & Roberts, A. L. (2000). Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environmental Science Technology, 34(9), 1794–1805.

  • Arshad, M., Soleymanzadeh, M., Salvacion, J. W. L. & SalimiVahid, F. (2014). Nanoscale zero-valent iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: kinetics, thermodynamic and mechanism. Journal of Colloid and Interface Science, 426(15): 241–251.

  • Auffan, M., Achouak, W., Rose, J., Roncato, M.-A., Chaneac, C., Waite, D. T., Masion, A., Woicik, J. C., Wiesner, M. R. & Bottero, J.-V. (2008). Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environmental Science Technology, 42(17) 6730–6735.

  • Baer, D. R., Gaspar, D. J., Nachimuthu, P., Techane, S. D., & Castner, D. G. (2010). Application of surface chemical analysis tools for characterization of nanoparticles. Analytical and Bioanalytical Chemistry, 396(3), 983–1002.

    CAS  Google Scholar 

  • Bai, R., & Tien, C. (1996). A new correlation for the initial filter coefficient under unfavorable surface interactions. Journal of Colloid Interface Science, 179, 631–634.

    CAS  Google Scholar 

  • Bardos, P., Bone, B.,Elliott, D., Hartog, N., John H. & Paul, N. (2011). A risk/benefit approach to the application of iron nanoparticles for the remediation of contaminated sites in the environment. Defra Research Project Final Report. Avaliable in: http://randd.defra.gov. uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&ProjectID=17502. Acessed in May 29 2014.

  • Barnes, R. J., Riba, O., Gardner, M. N., Scott, T. B., Jackman, S. A., & Thompson, I. P. (2010). Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions. Chemosphere, 79, 448–454.

    CAS  Google Scholar 

  • Barnett, B. R., Evans, A. L., Roberts, C. C., & Fritsch, J. M. (2011). Batch reactor kinetic studies on the reductive dechlorination of chlorinated ethylenes by tetrakis-(4-sulfonatophenyl) porphyrin cobalt. Chemosphere, 82, 592–596.

    CAS  Google Scholar 

  • Batley, G. E., Kirby, J. K., & McLaughlin, M. J. (2013). Fate and risks of nanomaterials in aquatic and terrestrial environments. Accounts of Chemical Research, 46(3), 854–862.

    CAS  Google Scholar 

  • Bennett, P., He, F., Zhao, D. Y., Aiken, B., & Feldman, L. (2010). In-situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Journal of Contaminant Hydrology, 116(1–4), 35–46.

    CAS  Google Scholar 

  • Berge, N. D.& Ramsburg, C. A. (2010). Iron-mediated trichloroethene reduction within nonaqueous phase liquid. Journal Contamination Hydrology, 118(3-4), 105–116.

  • Berge, N. D., & Ramsburg, C. A. (2009). Oil-in-water emulsions for encapsulated delivery of reactive iron particles. Environmental Science Technology, 43(13), 5060–5066.

    CAS  Google Scholar 

  • Bezbaruah, A. N., Krajangpan, S., Chisholm, B. J., Khan, E., & Bermudez, J. J. (2009). Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. Journal of Hazardous Materials, 166(2–3), 1339–1343.

    CAS  Google Scholar 

  • Brar, S. K., Verma, M., Tyagi, R. D., & Surampalli, R. Y. (2010). Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Management, 30, 504–520.

    CAS  Google Scholar 

  • Burghardt, D., Simon, E., Knöller, K., Kassahun, A. (2007). Immobilization of uranium and arsenic by injectible iron and hydrogen stimulated autotrophic sulphate reduction, Journal of Contaminant. Hydrology, 94(3-4), 305–314.

  • Calvin, S., Carpenter, E. E. & Harris, V. G. (2003). Characterization of passivated iron nanoparticles by x-ray absorption spectroscopy, Physical Review, B 68(3), 033411.

  • Cameselle, C., Reddy, K. R. R., Darko-Kagya, K., & Khodadoust, A. (2013). Effect of dispersant on transport of nanoscale iron particles in soils: zeta potential measurements and column experiments. Journal of Environmental Engineering, ASCE, 139(1), 23–33.

    CAS  Google Scholar 

  • Cao G. (2004). Nanostructures and nanomaterials. Synthesis, Properties & Applications. London: Imperial College Press.

  • Capek, J. T. (2004). Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Advances in Colloid and Interface Science, 110(1–2), 49–74.

    CAS  Google Scholar 

  • Carucci, A., Manconi, I. & Manigas, L. (2007). Use of membrane bioreactors for the bioremediation of chlorinated compounds polluted groundwater. Water Sci. Technol., 55(10), 209–216.

  • Celebi, O., Üzüm, C., Shahwan, T., & Erten, H. N. (2007). A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. Journal of Hazardous Materials, 148, 761–767.

    CAS  Google Scholar 

  • CETESB (2013). Relationship of contaminated and rehabilitated areas in the State of São Paulo-Brazil. Access: http://www.cetesb.sp.gov.br/userfiles/file/areas-contaminadas/2013/texto-explicativo.pdf. 30-05-14. (in portuguese)

  • Cheng, R., Wang, J.-L., & Zhang, W.-X. (2007). Comparison of reductive dechlorination of p-chlorophenol using Fe-0 and nanosized Fe-0. Journal Hazardous Material, 144, 334–339.

    CAS  Google Scholar 

  • Choe, S., Chang, Y. Y., Hwang, K. Y., & Khim, J. (2000). Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere, 41, 1307–1311.

    CAS  Google Scholar 

  • Choe, S., Lee, S. H., Chang, Y. Y., Hwang, K. Y., & Khim, J. (2001). Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0. Chemosphere, 42, 367–372.

    CAS  Google Scholar 

  • Choi, C.-J., Dong, X.-L., & Kim, B.-K. (2001). Microstructure and magnetic properties of Fe nanoparticles synthesized by chemical vapor condensation. Materials Transaction, 42(10), 2046–2049.

    CAS  Google Scholar 

  • Christiansen, C. M., Damgaard, I., Broholm, M., Kessler, T., Klint, K. E., Nilsson, B., & Bjerg, P. L. (2010). Comparison of delivery methods for enhanced in-situ remediationin clay till. Groundwater Monitoring & Remediation, 30(4), 107–122.

    Google Scholar 

  • Chrysochoou, M., McGuire, M., & Daha, G. (2012). Transport characteristics of green-tea nano-scale zero valent iron as a function of soil mineralogy. Chemical Engineering Transactions, 28, 121–126.

    Google Scholar 

  • Chun, C. L., Baer, D. R., Matson, D. W., Amonette, J. E., & Penn, R. L. (2010). Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd, and Ni. Environmental Science Technology, 44(13), 5079–5085.

    CAS  Google Scholar 

  • Cirtiu, C. M., Raychoudhury, T., Ghoshal, S., & Moores, A. (2011). Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre- and post-grafted with common polymers. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 390(1–3), 95–104.

    CAS  Google Scholar 

  • Comba, S., & Sethi, R. (2009). Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Research, 43(15), 3717–3726.

    CAS  Google Scholar 

  • Cook, S. M. (2009). Assessing the use and application of zero-valent iron nanoparticle technology for remediation at contaminated sites. Access: http://www.clu-in.org/download/studentpapers/Zero-Valent-Iron-Cook.pdf. 29-05-2014.

  • Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211–212, 112–125.

    Google Scholar 

  • Cundy, A. B., Hopkinson, L., & Whitby, R. L. D. (2008). Use of iron-based technologies in contaminated land and groundwater remediation: a review. Science of the Total Environment, 400, 42–51.

    CAS  Google Scholar 

  • Dalla Vecchia, E., Luna, M., & Sethi, R. (2009). Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environmental Science Technology, 43(23), 8942–8947.

    CAS  Google Scholar 

  • Darab, J. G., Amonette, A. B., Burke, D. S. D., & Orr, R. D. (2007). Removal of pertechnetate from simulated nuclear waste streams using supported zero valent iron. Chemical Materials, 19, 5703–5713.

    CAS  Google Scholar 

  • Darko-Kagya, K., Khodadoust, A. P., & Reddy, K. R. (2010a). Reactivity of aluminum lactate-modified nanoscale iron particles with pentachlorophenol in soils. Environmental Engineering Science, 27(10), 861–869.

    CAS  Google Scholar 

  • Darko-Kagya, K., Khodadoust, A. P., & Reddy, K. R. (2010b). Reactivity of lactate-modified nanoscale iron particles with 2,4-dinitrotoluene in soils. Journal of Hazardous Materials, 182, 177–183.

    CAS  Google Scholar 

  • Diao, M., & Yao, M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water Research, 43, 5243–5251.

    CAS  Google Scholar 

  • Dickinson, M., & Scott, T. B. (2010). The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. Journal of Hazardous Material, 178, 171–179.

    CAS  Google Scholar 

  • Dong, H., & Lo, I. M. C. (2013). Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron. Water Research, 47(1), 419–427.

    CAS  Google Scholar 

  • Eglal, M. M. & Ramamurthy, A. S. (2014). Nanofer ZVI: morphology, particle characteristics, kinetics, and applications. Journal of Nanomaterials. 2014, ID 152824, 11. Doi:10.1155/2014/152824

  • Elliot, D. W., Lien, H. L. & Zhang, W.-X. (2009). Degradation of lindane by zero-valent iron nanoparticles, Journal Environmental. Engineering. (135), 317–325.

  • Elliott, D. W. & Zhang W-x, (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science Technology. (35),4922–6.

  • Fahlman. B. D. (2011). Materials chemistry. Springer, 2nd ed. XI, 736p.

  • Fan, J., Guo, Y., Wang, J., & Fan, M. (2009). Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials, 166, 904–910.

    CAS  Google Scholar 

  • Fang, Z., Chen, J., Qiu, X., Cheng, W. & Zhu, L. (2011). Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination. 268(1-3),60-67.

  • Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of Hazardous Materials, 267, 194–205.

    CAS  Google Scholar 

  • Gastone, F., Tosco, T., & Sethi, R. (2014). Green stabilization of microscale iron particles using guar gum: bulk rheology, sedimentation rate and enzymatic degradation. Journal of Colloid and Interface Science, 421, 33–43.

    CAS  Google Scholar 

  • Ghauch, A., Tuqan, A., & Assi, H. A. (2009). Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environmental Pollution, 157, 1626–1635.

    CAS  Google Scholar 

  • Gillham, R.W. (1996). In-situ treatment of groundwater: metal-enhanced degradation of chlorinated organic. 9, 249-274.

  • Gillham, R. W., & O’Hannesin, S. F. (1994). Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 32, 958–967.

    CAS  Google Scholar 

  • Grieger, K. D., Fjordboge, A., Hartmann, N. B., Eriksson, E., Bjerg P. L., Baun, A. (2010). Environmental benefits and risks of zerovalent iron nanoparticles, (nZVI) for in situ remediation: risk mitigation or trade-off? Journal of Contamination Hydrology, 118(3–4), 165–183.

  • He, F. & Zhao, D. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science Technology, 39(9),3314-3320.

  • He, F., & Zhao, D. (2007). Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science Technology, 41, 6216–6221.

    CAS  Google Scholar 

  • He, F., Zhang, M., Qian, T., & Zhao, D. (2009). Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling. Journal Colloid Interface Science, 334(1), 96–102.

    CAS  Google Scholar 

  • He, F., Zhao, D. & Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in-situ destruction of chlorinated solvents in source zones. Water Research, 44(7), 2360–2370.

  • Hendren, C. O., Lowry, M., Grieger, K. D., Money, E. S., Johnston, J. M., Wiesner, M. R., & Beaulieu, S. M. (2013). Modeling approaches for characterizing and evaluating environmental exposure to engineered nanomaterials in support of risk-based decision making. Environmental Science Technology, 47(3), 1190–1205.

    CAS  Google Scholar 

  • Henn, K. W., & Waddill, D. W. (2006). Utilization of nanoscale zero-valent iron for source remediation—a case study. Remediation Journal, 16(2), 57–76.

    Google Scholar 

  • Hoag, G. E., Collins, J. B., Holcomb, J. L., Hoag, J. R., Nadagouda, M. N., & Varma, R. S. (2009). Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. Journal Material Chemistry, 19, 8671–8677.

    CAS  Google Scholar 

  • Hochella, M. F., Jr., Moore, J. N., Putnis, C. V., Putnis, A., Kasama, T., & Eberl, D. D. (2005). Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: implications for metal transport and bioavailability. Geochimica et Cosmochimica Acta, 69(7), 1651–1663.

    CAS  Google Scholar 

  • Hosseini, S. M., & Tosco, T. (2013). Transport and retention of high concentrated nano-Fe/Cu particles through highly flow-rated packed sand column. Water Research, 47(1), 326–338.

    CAS  Google Scholar 

  • Hu, N., Li, Z., Huang, P., & Tao, C. (2006). Distribution and mobility of metals in agricultural soils near a copper smelter in South China. Environmental Geochemistry and Health, 28, 19–26.

    CAS  Google Scholar 

  • Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of Hazardous Materials, 211–212, 317–331.

    Google Scholar 

  • Hwang, Y. H., Kim, D. G., & Shin, H. S. (2011). Mechanism study of nitrate reduction by nano zero valent iron. Journal of Hazardous Materials, 185, 1513–1521.

    CAS  Google Scholar 

  • Hydutsky, B. W., Mack, E. J., Beckerman, B. B., Skluzacek, J. M., & Mallouk, T. E. (2007). Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environmental Science Technology, 41(18), 6418–6424.

    CAS  Google Scholar 

  • Jiang, Z. M., Lv, L., Zhang, W. M., Du, Q., Pan, B. C., Yang, L., & Zhang, Q. X. (2011). Nitratereduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Water Research, 45, 2191–2198.

    CAS  Google Scholar 

  • Jiemvarangkul, P., Zhang, W.-X., & Lien, H.-L. (2011). Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chemical Engineering Journal, 170(2–3), 482–491.

    CAS  Google Scholar 

  • Johnson, R. L., Johnson, G. O., Nurmi, J. T., & Tratnyek, P. G. (2009). Natural organic matter enhanced mobility of nano zerovalent iron. Environmental Science Technology, 43, 5455–5460.

    CAS  Google Scholar 

  • Johnson, R. L., Nurmi, J. T., O’Brien Johnson, G. S., Fan, D., O’Brien Johnson, R. L., Shi, Z., Salter-Blanc, A. J., Tratnyek, P. G., & Lowry, G. V. (2013). Field-scale transport and transformation of carboxymethylcellulose- stabilized nano zero-valent iron. Environmental Science and Technology, 47(3), 1573–1580.

    CAS  Google Scholar 

  • Joo, S.H. & Zhao, D. (2008). Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere, 70(3),418-425.

  • Ju-Nam, Y. & Lead, J. R. (2008). Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Science of the Total Environmental, 400(1-3),396-414.

  • Kanel, S. R., Manning, B., Charlet L. & Choi H. (2005). Removal of arsenic(III) from groundwater by nanoscale zero-valent iron, Environmental Science Technology, 39(5), 1291–1298.

  • Kanel, S. R.,Greneche, J. M. & Choi, H. (2006). Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material, Environmental Science Technology, 40(6), 2045–2050.

  • Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2007). Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. Journal of Nanoparticle Research, 9, 725–735.

    CAS  Google Scholar 

  • Kanel, S. R., Goswami, R. R., Clement, T. P., Barnett, M. O., & Zhao, D. (2008). Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environmental Science Technology, 42, 896–900.

    CAS  Google Scholar 

  • Karabelli, D., Uzum, C., Shahwan, T., Eroglu, A.E., Lieberwirth, I., Scott, T.B. & Hallam, K.R. (2008). Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: a study of the capacity and mechanism of uptake, Industrial Engineering Chemistry Research, 47(14), 4758–4764.

  • Karlsson, M. N. A., Deppert, K., Wacaser, B. A., Karlsson, L. S., & Malm, J. O. (2005). Sizecontrolled nanoparticles by thermal cracking of iron pentacarbonyl. Applied Physics A: Materials Science & Processing, 80(7), 1579–1583.

    CAS  Google Scholar 

  • Karn, B., Kuiken, T., & Otto, M. (2011). Nanotechnology and in-situ remediation: a review of the benefits and potential risks. Ciência & Saúde Coletiva, 16(1), 165–178.

    Google Scholar 

  • Kharisov, B. I., Dias, H. V. R., Kharissova, O. V., Jimenez-Perez, V. M., Perez, B. O., & Flores, B. M. (2012). Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Advances, 2(25), 9325–9358.

    CAS  Google Scholar 

  • Kim, T. S., Sun, W., Choi, C.-J., & Lee, B.-T. (2003). Microstructure of Fe nanoparticles fabricated by chemical vapor condensation. Reviews on Advanced Materials Science, 5(5), 481–486.

    Google Scholar 

  • Kim, J. Y., Park, H. J., Lee, C., Nelson, K. L., Sedlak, D. L., & Yoon, J. (2010). Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous iron. Applied & Environmental Microbiology, 76(22), 7668–7670.

    CAS  Google Scholar 

  • Kim, J. Y., Lee, C., Love, D. C., Sedlak, D. L., Yoon, J., & Nelson, K. L. (2011). Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. Environmental Science Technology, 45(16), 6978–6984.

    CAS  Google Scholar 

  • Kim, S. A., Kamala-Kannan, S., Lee, K. J., Park, Y. J., Shea, P. J., Lee, W. H., Kim, H. M., & Oh, B. T. (2013). Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chemical Engineering Journal, 217, 54–60.

    CAS  Google Scholar 

  • Kirschling, T. L., Gregory, K. B., Minkley E. G., Lowry, G. V. & Tilton, R. D. (2010). Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environmental Science Technology. 44(9), 3474–3480.

  • Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. E., Handy, R. D., Lyon, D. Y., Mahendra, S., McLaughlin, M. J., & Lead, J. R. (2008). Nanoparticles in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27(9), 1825–1851.

    CAS  Google Scholar 

  • Klimkova, S., Cernik, M., Lacinova, L., Filip, J., Jancik, D., & Zboril, R. (2011). Zero-valent iron nanoparticles in treatment of acid mine water from in-situ uranium leaching. Chemosphere, 82, 1178–1184.

    CAS  Google Scholar 

  • Kocur, C. M., Chowdhury, A. I., Sakulchaicharoen, N., Boparai, H. K., Weber, K. P., Sharma, P., Krol, M. M., Austrins, L., Peace, C., Sleep, B. E., & O’Carroll, D. M. (2014). Characterization of nZVI mobility in a field scale test. Environmental Science Technology, 48(5), 2862–2869.

    CAS  Google Scholar 

  • Kocur, C. M., O’Carroll, D. M., Sleep, B. E. (2013). Impact of nZVI stability on mobility in porous media. Journal of Contaminant Hydrology, 145, 17–25.

  • Krol, M. M., Oleniuk, A. J., Kocur, C. M., Sleep, B. E., Bennett, P., Xiong, P. Z., & O’Carroll, D. M. (2013). A field-validated model for in-situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environmental Science Technology, 47(13), 7332–7340.

    CAS  Google Scholar 

  • Kuiken, T. (2010). Cleaning up contaminated waste sites: is nanotechnology the answer? Nano Today, 5, 6–8.

    CAS  Google Scholar 

  • Lee, C., Kim, J., Lee, W., Nelson, K., Yoon, J., & Sedlak, D. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environmental Science Technology, 42, 4927–4933.

    CAS  Google Scholar 

  • Li, T., & Farrell, J. (2000). Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes. Environmental Science Technology, 34, 173–179.

    CAS  Google Scholar 

  • Li, X.-Q., & Zhang, W.-X. (2007). Sequestration of metal cations with zerovalent iron nanoparticles: a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). The Journal of Physical Chemistry C, 111(19), 6939–6946.

    CAS  Google Scholar 

  • Li, A., Tai, C., Zhao, Z., Wang, Y., Zhang, Q., Jiang, G., & Hu, J. (2007). Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Environmental Science Technology, 41, 6841–6846.

    CAS  Google Scholar 

  • Li, S. L., Yan, W. L., & Zhang, W. X. (2009). Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chemistry, 11, 1618–1626.

    CAS  Google Scholar 

  • Li, Z., Greden, K., Alvarez, P. J. J., Gregory, K. B., & Lowry, G. V. (2010). Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. Coli. Environmental Science & Technology, 44(9), 3462–3467.

    CAS  Google Scholar 

  • Lien, H., & Zhang, W. (1999). Reactions of chlorinated methanes with nanoscale metal particles in aqueous solutions. Journal of Environmental Engineering, 125(11), 1042–1047.

    CAS  Google Scholar 

  • Lin, Y., Weng, C., & Chen, F. (2008). Effective removal of AB24 dye by nano/micro-size zero-valent iron. Separation and Purification Technology, 64, 26–30.

    CAS  Google Scholar 

  • Ling, X. F., Li, J. S., Zhu, W., Zhu, Y. Y., Sun, X. Y., Shen, J. Y., Han, W. Q., & Wang, L. J. (2012). Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon foradsorption and synergistic reduction of nitrobenzene. Chemosphere, 87, 655–660.

    CAS  Google Scholar 

  • Liu, Z. G., & Zhang, F. S. (2010). Nano-zerovalent iron contained porous carbons developedfrom waste biomass for the adsorption and dechlorination of PCBs. Bioresource Technology, 101, 2562–2564.

    CAS  Google Scholar 

  • Liu, Y. Q., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science Technology, 39(5), 1338–1345.

    CAS  Google Scholar 

  • Liu, H. B., Chen, T. H., Chang, D. Y., Chen, D., Liu, Y., He, H. P., Yuan, P., & Frost, R. (2012). Nitratereduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite. Materials Chemistry and Physics, 133, 205–211.

    CAS  Google Scholar 

  • Machado, S., Pinto, S. L., Grosso, J. P., Nouws, H. P. A., Albergaria, J. T., & Delerue-Matos, C. (2013). Green production of zero-valent iron nanoparticles using tree leaf extracts. Science Total Environmental, 445–446, 1–8.

    Google Scholar 

  • Martin, J. E., Herzing, A. A., Yan, W. L., Li, X. Q., Koel, B. E., Kiely, C. J., & Zhang, W. X. (2008). Determination of the oxide layer thickness in core−shell zerovalent iron nanoparticles. Langmuir, 24, 4329–4334.

    CAS  Google Scholar 

  • Matheson, L. J., & Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanesby iron metal. Environmental Science Technology, 28, 2045–2045.

    CAS  Google Scholar 

  • Mueller, N. C., Braun, J., Bruns, J., Cerník, M., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (nZVI) for groundwater remediation in Europe. Environmental Science Pollution Research, 19, 550–558.

    CAS  Google Scholar 

  • Naja, G., Halasz, A., Thiboutot, S., Ampleman, G. & Hawari, J. (2008). Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles, Environmental Science Technology. 42(12), 4364–4370.

  • Nanorem (2013) Nanotechnological Remediation Processes from Lab Scale to End User Applications for the Restoration of a Clean Environment. Accessed http://www.nanorem.eu/index.aspx . 31/03/2014.

  • Navarro, E., Baun, A., Behra, R., Hartmann, N., Filser, J., Miao, A., Quigg, A., & Neal, A. (2008). What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology, 17(5), 362–371.

    Google Scholar 

  • Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 3(311), 622–627.

    Google Scholar 

  • Niemeyer, C. M. (2001). Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angewandte Chemie International Edition, 40(22), 4128–4158.

    CAS  Google Scholar 

  • Njagi, E. C., Huang, H., Stafford, L., Genuino, H., Galindo, H. M., Collins, J. B., Hoag, G. E., & Suib, S. L. (2011). Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 27, 264–271.

    CAS  Google Scholar 

  • Nurmi, J. T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J. E., Pecher, K., Wang, C. M., Linehan, J. C., Matson, D. W., Penn, R. L., & Driessen, M. D. (2005). Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environmental Science Technology, 39(5), 1221–1230.

    CAS  Google Scholar 

  • Nutt, M. O., Hughes, J. B., & Wong, M. S. (2005). Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene Hydrodechlorination. Environmental Science Technology, 39(5), 1346–1353.

    CAS  Google Scholar 

  • O’Carrol, D. M. (2014). Nanotechnology applications for clean water (second edition) solutions for improving water quality. A volume in Micro and Nano Technologies, 441–456. DOI: 10.1016/B978-1-4557-3116-9.00028-7.

  • O’Carroll, D., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advanced Water Resources, 51, 104–122.

    Google Scholar 

  • Olegario, J. T., Yee, N., Miller, M., Sczepaniak, J., & Manning, B. (2010). Reduction of Se (VI) to Se (−II) by zerovalent iron nanoparticle suspensions. Journal Nanoparticles Research, 12(6), 2057–2068.

    CAS  Google Scholar 

  • Orth, W.S. & Gillham, R.W. (1996). Dechlorination of trichloroethene in aqueous solution using Fe–O. Environmental Science Technology. (30):66–71.

  • Panagos, P., Liedekerke, M. V,, Yigini, Y. & Montanarella, L. (2013). Contaminated sites in Europe: review of the current situation based on data collected through a European Network. Journal of Environmental and Public Health. ID 158764, 11p. http://dx.doi.org/10.1155/2013/158764

  • Peralta-Videa, J. R., Zhao, L., Lopez-Moreno, M. L., De La Rosa, G., Hong, J., & Gardea-Torresdey, J. L. (2011). Nanomaterials and the environment: a review for the biennium 2008–2010. Journal of Hazardous Materials, 186, 1–15.

    CAS  Google Scholar 

  • Petosa, R., Jaisi, D. P., Quevedo, I. R., Elimelech, M. & Tufenkji, N. (2010). Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol., 44(17), 6532–6549.

  • Phenrat, T., Saleh, N., Sirk, K., Kim, H.-J., Tilton, R. D., & Lowry, G. V. (2008). Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte properties and their effect on aggregation and sedimentation. Journal of Nanoparticles Research, 10, 795–814.

    CAS  Google Scholar 

  • Phenrat, T., Liu, Y., Tilton, R. D. & Lowry, G. V. (2009). Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms. Environmental Science Technology, 43(5), 1507–1514.

  • Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., & Lowry, G. V. (2010). Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. Journal of Contaminant Hydrology, 118(3–4), 152–164.

    CAS  Google Scholar 

  • Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science Technology, 34, 2564–2569.

    CAS  Google Scholar 

  • Ponder, S. M., Darab, J. G., Bucher, J., Caulder, D., Craig, I., Davis, L., Edelstein, N., Lukens, W., Nitsche, H., Rao, L. F., Shuh, D. K., & Mallouk, T. E. (2001). Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chemical Materials, 13, 479–486.

    CAS  Google Scholar 

  • Posner, J. D. (2009). Engineered nanomaterials: where they go, nobody knows. Nano Today, 4, 114–115.

    CAS  Google Scholar 

  • Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O’Hara, S., Krug, T., Major, D., Yoon, W. S., Gavaskar, A., & Holdsworth, T. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science Technology, 39, 1309–1318.

    CAS  Google Scholar 

  • Reddy, K. R. (2010) Nanotechnology for site remediation: dehalogenation of organic pollutants in soils and groundwater by nanoscale iron particles. In: Proceedings of the 6th International Congress on Environmental Geotecnics. New Delhi. India. 1:163–180.

  • Reddy, K. R. (2013) Evolution of Geoenvironmental Engineering. Environmental Geotechnics. ICE Publishing. http://dx.doi.org/10.1680/envgeo.13.00088.

  • Reddy, K. R., Darko-Kagya, K., & Cameselle, C. (2011). Electrokinetic-enhanced transport of lactate-modified nanoscale iron particlesfor degradation of dinitrotoluene in clayey soils. Separation and Purification Technology, 79, 230–237.

    CAS  Google Scholar 

  • Reddy, K. R., Khodadoust, A. P., & Darko-Kagya, K. (2012). Transport and reactivity of lactate-modified nanoscale iron particles in PCP-contaminated soils. Journal of Hazardous, Toxic, and Radioactive Waste, 16(1), 68–74.

    CAS  Google Scholar 

  • Reddy, K., Darnault, C. & Darko-Kagya, K. (2014). Transport of lactate-modified nanoscale iron particles in porous media. Journal of Geotechnical and Geoenvironmental Engineer. 140, (2), 04013013

  • Reijnders, L. (2006). Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. Journal Cleaning Production, 14(2), 124–133.

    Google Scholar 

  • Riba, O., Scott, T. B., Ragnarsdottir, K. V., & Allen, G. C. (2008). Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochimica et Cosmochimica Acta, 72, 4047–4057.

    CAS  Google Scholar 

  • Rosansky, S., Condit, W. & Sirabian, R. (2013). Best practices for injection and distribution of amendments. Technical Report TR-NAVFAC-EXWC-EV-1303. 81p. Accessed: http://www.clu-in.org/remediation/

  • Rotello, V. M. (2004). Nanoparticles: Building Blocks for Nanotechnology (1st ed., p. 284). New York: Springer.

    Google Scholar 

  • Sakulchaicharoen, N., O’Carroll, D. M., & Herrera, J. E. (2010). Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. Journal Contamination Hydrology, 118, 117–127.

    CAS  Google Scholar 

  • Sakulchaicharoen, N., O’Carroll, D.M. & Herrera, J.E. (2010). Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. Journal Contamination Hydrology. 118(3-4), 117–127.

  • Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyjaszewski, K., Tilton, R.D. & Lowry, G.V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5(12), 2489–2494.

  • Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24(1), 45–57.

    CAS  Google Scholar 

  • Sarathy, V., Salter, A. J., Nurmi J. T., Johnson. G. O., Johnson, R. L. & Tratnyek P. G. (2010). Degradation of 1,2,3-trichloropropane (TCP): hydrolysis, elimination, and reduction by iron and zinc. Environmental Science Technology, 44(2), 787–793.

  • Satapanajaru, T., Anurakpongsatorn, P., Pengthamkeerati, P. & Boparai, H. (2008). Remediation of atrazine-contaminated soil and water by nano zerovalent iron, Water Air Soil Pollution, 192(1-4), 349–359.

  • Schrick, B., Blough, J. L., Jones, A. D., & Mallouk, T. E. (2002). Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel–iron nanoparticles. Chemistry of Materials, 14, 5140–5147.

    CAS  Google Scholar 

  • Schrick, B., Hydutsky, B. W., Blough, J. L., & Mallouk, T. E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16, 2187–2193.

    CAS  Google Scholar 

  • Scott, T. B., Popescu, I. C., Crane, R. A., & Noubactep, C. (2011). Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. Journals of Hazardous Materials, 186(1), 280–287.

    CAS  Google Scholar 

  • Sevcu, A., El-Temsah, Y. S., Joner, E. J., & Cernik, M. (2011). Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes and Environments, 26(4), 271–281.

    Google Scholar 

  • Sharma, H. D., & Reddy, K. R. (2004). Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies (p. 961). Hoboken, New Jersey: John Wiley & Sons Inc.

    Google Scholar 

  • Shen, X., Zhao, L., Ding, Y., Liu, B., Zeng, H., Zhong, L., & Li, X. (2011). Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation. Journal of Hazardous Materials, 186, 1773–1780.

    CAS  Google Scholar 

  • Shi, L. N., Zhang, X., & Chen, Z. L. (2011). Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 45, 886–892.

    CAS  Google Scholar 

  • Shih, Y. H., & Tai, Y. T. (2010). Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Chemosphere, 78, 1200–1206.

    CAS  Google Scholar 

  • Shih, Y., Chen, Y., Chen, M., Tai, Y., & Tso, C. (2009). Dechlorination of hexachlorobenzene by using nanoscale Fe and nanoscale Pd/Fe bimetallic particles. Colloids and Surfaces A, 332(2–3), 84–89.

    CAS  Google Scholar 

  • Shu, H. Y., Chang, M. C., Chen, C. C., & Chen, P. E. (2010). Using resin supported nano zero-valent iron particles for decoloration of acid blue 113 azo dye solution. Journal of Hazardous Materials, 184, 499–505.

    CAS  Google Scholar 

  • Simunek, J., Jacques, D., Van Genuchten, M.Th. & Mallants.D. (2006). Multicomponent geochemical transport modeling using the HYDRUS computer software packages. Journal of the American Water Resources Association, 42, 1537–1547.

  • Sirk, K. M., Saleh, N. B., Phenrat, T., Kim, H. J., Dufour, B., Ok, J., Golas, P. L., Matyjaszewsk, K., Lowry, G. V., & Tilton, R. D. (2009). Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. Environmental Science Technology, 43(10), 3803–3808.

    CAS  Google Scholar 

  • Sun, Y.-P., Li, X.-Q., Cao, J., Zhang, W.-X., & Wang, H. P. (2006). Characterization of zerovalent iron nanoparticles. Advances in Colloid and Interface Science, 120(1–3), 47–56.

    CAS  Google Scholar 

  • Sun, Y.-P., Li, X.-Q., Cao, J., Zhang, W.-X., & Wang, H. P. (2007). A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 308, 60–66.

    CAS  Google Scholar 

  • Tang, S. C. N., & Lo, I. M. C. (2013). Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Research, 47, 2613–2632.

    CAS  Google Scholar 

  • Tian, H., Li, J., Mu, Z. & Li, L. (2009). Z.H. Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Separation and Purification Technology, 66(1), 84–89.

  • Tiraferri, A., & Sethi, R. (2009). Enhanced transport of zerovalent iron nanoparticles insaturated porous media by guar gum. Journal of Nanoparticle Research, 11(3), 635–645.

    CAS  Google Scholar 

  • Tiraferri, A., Chen, K. L., Sethi, R., & Elimelech, M. (2008). Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science, 324(1), 71–79.

    CAS  Google Scholar 

  • Tiraferri, A., Tosco, T., Sethi, R. (2011) Transport and retention of microparticles in packed sand columns at low and intermediate ionic strengths: experiments and mathematical modeling. Environmental Earth Science, 633(4), 847–859.

  • Torkzaban, S., Wan, J., Tokunaga, T. K., & Bradford, S. A. (2012). Impacts of bridging complexation on the transport of surface-modified nanoparticles in saturated sand. Journal of Contaminant Hydrology, 136–137, 86–95.

    Google Scholar 

  • Tosco, T., & Sethi, R. (2009). MNM1D: a numerical code for colloid transport in porous media: implementation and validation. American Journal of Environmental Sciences, 5(4), 517–525.

    Google Scholar 

  • Tosco, T., & Sethi, R. (2010). Transport of non-Newtonian suspensions of highly concentrated micro- and nanoscale iron particles in porous media: a modeling approach. Environmental Science Technology, 44(23), 9062–9068.

    CAS  Google Scholar 

  • Tosco, T., Coisson, M., Xue, D. & Sethi, R. (2012). Zerovalent iron nanoparticles for groundwater remediation: surface and magnetic properties, colloidal stability, and perspectives for field application. In: Chiolerio, A., A.P. (Eds.), Nanoparticles Featuring Electromagnetic Properties: Research Signpost, Kerala, p. 201–223.

  • Tosco, T., Papini, M. P., Viggi, C. C., & Sethi, R. (2014). Nanoscale zerovalent iron particles for groundwater remediation: a review. Journal of Cleaner Production, 77, 10–21.

    CAS  Google Scholar 

  • Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnology for environmental clean up. Nanotoday, 1(2), 44–48.

    Google Scholar 

  • Tufenkji, N., & Elimelech, M. (2004). Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environmental Science Technology, 38, 529–536.

    CAS  Google Scholar 

  • U. S. Environmental Protection Agency - USEPA. (2012). Emerging contaminants—nanomaterials fact sheet. Solid Waste and Emergency Response. EPA 505-F-11-009. May 2012. Available on: http://www.epa.gov/fedfac/pdf/emerging_contaminants_nanomaterials.pdf> Accessed in 25/03/2014.

  • U. S. Environmental Protection Agency—USEPA (2014). Selected sites using or testing nanoparticles for remediation, <http://www.clu-in.org/remediation/nano-site-list.pdf>. (Accessed 29-05-2014)

  • U.S. Department of Health and Human Services (USDHHS). Centers for Disease Control and Prevention (2006). Approaches to safe nanotechnology: an information exchange with NIOSH. http://www.cdc.gov/niosh/topics/nanotech/. Accessed 31/03/2014.

  • U.S. Environmental Protection Agency - USEPA (2004). EPA’s cleaning up the nation’s waste sites: markets and technology trends (2004 edition): Available on: http://www.epa.gov/superfund/accomp/news/30years.htm. Accessed in 03-26-2014.

  • U.S. Environmental Protection Agency - USEPA (2007). Science Policy Council. Nanotechnology White Paper. U.S. Environmental Protection Agency. Available on: http://www.epa.gov/ncer/nano/publications/whitepaper12022005.pdf. Acessed in 31/03/2014

  • Üzüm, C., Shahwan, T. A., Eroglu, E., Lieberwirth, I., Scott, T. B., & Hallam, K. R. (2008). Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chemical Engineering Journal, 144, 213–220.

    Google Scholar 

  • Van, G., Th, M., Simunek, J., Leij, F. J., Toride, N., & Sejna, M. (2012). STANMOD: model use, calibration, and validation. transactions of the ASAE. American Society of Agricultural Engineers, 55, 1353–1366.

    Google Scholar 

  • Varanasi, P., Fullana, A., & Sidhu, S. (2007). Remediation of PCB contaminated soils using iron nano-particles. Chemosphere, 66, 1031–1038.

    CAS  Google Scholar 

  • Velimirovic, M., Chen, H., Simons, Q., & Bastiaens, L. (2012). Reactivity recovery of guar gum coupled mZVI by means of enzymatic breakdown and rinsing. Journal of Contaminant Hydrology, 142–143, 1–10.

    Google Scholar 

  • Wang, C.-B., & Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science Technology, 31, 2154–2156.

    CAS  Google Scholar 

  • Wang, W., Jin, Z. H., Li, T. L., Zhang, H., & Gao, S. (2006). Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal. Chemosphere, 65, 1396–1404.

    CAS  Google Scholar 

  • Wang, C. M., Baer, D. R., Amonette, J. E., Engelhard, M. H., Antony, J., & Qiang, Y. J. (2009). Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Journal of American Chemical Society, 131(25), 8824–8832.

    CAS  Google Scholar 

  • Wang, Q., Lee, S., & Choi, H. (2010). Aging study on the structure of Fe0-nanoparticles: stabilization, characterization, and reactivity. The Journal of Physical Chemistry C, 114(5), 2027–2033.

    CAS  Google Scholar 

  • Weber, E. J. (1996). Iron-mediated reductive transformations: investigation of reaction mechanism. Environmental Science Technology, 30(2), 716–719.

    CAS  Google Scholar 

  • Wei, Y. T., Wu, S. C., Chou, C. M., Che, C. H., Tsai, S. M., & Lien, H. L. (2010). Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: a field case study. Water Research, 44, 131–140.

    CAS  Google Scholar 

  • Wong, M. S., Alvarez, P. J. J., Fang, Y., Akcin, I. N., Nutt, M. O., Miller, J. T., & Heck, K. N. (2009). Cleaner water using bimetallic nanoparticle catalysts. Journal of Chemical Technology and Biotechnology, 84, 158–166.

    CAS  Google Scholar 

  • Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., Sioutas, C., Yeh, J., Wiesner, M., & Nel, A. (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Letters, 6, 1794–1807.

    CAS  Google Scholar 

  • Xiong, Z., Zhao, D., & Pan, G. (2007). Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles. Water Research, 41, 3497–3505.

    CAS  Google Scholar 

  • Xiu, Z.-M., Gregory, K. B., Lowry, G. V., & Alvarez, P. J. J. (2010). Effect of bare and coated nano-scale zero-valent iron on tceA and vcrA gene expression in dehalococcoides spp. Environmental Science Technology, 44, 7647–7651.

    CAS  Google Scholar 

  • Xu, Y., & Zhao, D. (2007). Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Research, 41, 2101–2108.

    CAS  Google Scholar 

  • Yan, W. L., Ramos, M. A. V., Koel, B. E., & Zhang, W. X. (2012). Sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron spectroscopy. Journal of Physical Chemistry C, 116, 5303–5311.

    CAS  Google Scholar 

  • Yan, W., Lien, H.-L., Koel, B. E., & Zhang, W.-X. (2013). Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environmental Science: Processes & Impacts, 15, 63–77.

    CAS  Google Scholar 

  • Yang, G. C. C., Tu, H.-C., & Hung, C.-H. (2007). Stability of nanoiron slurries and their transport in the subsurface environment. Separation and Purification Technology, 58(1), 166–172.

    CAS  Google Scholar 

  • Yao, K. M., Habibian, M. T., & O’Melia, C. R. (1971). Water and waste water filtration. Concepts and applications. Environmental Science Technology, 5(11), 1105–1112.

    CAS  Google Scholar 

  • Yoo, B. Y., Hernandez, S. C., Koo, B., Rheem, Y., & Myung, N. V. (2007). Electrochemically fabricated zero-valent iron, iron–nickel, and iron–palladium nanowires for environmental remediation applications. Water Science and Technology, 55, 149–156.

    CAS  Google Scholar 

  • Zhang, W.-X. (2003). Nanoscale iron particles for environmental remediation: an overview. Journal of Nanoparticle Research, 5, 323–332.

    CAS  Google Scholar 

  • Zhang, W., Wang, C., & Lien, H. (1998). Catalytic reduction of chlorinated hydrocarbons by bimetallic particles. Catalysis Today, 40(4), 387–395.

    CAS  Google Scholar 

  • Zhang, X., Lin, Y., Chen, Z. (2009). 2,4,6-Trinitrotoluene reduction kinetics in aqueous solution using nanoscale zero-valent iron. Journal of Hazardous Material, 165, 923–927.

  • Zhang, X., Lin, S., Chen, Z. L., Megharaj, M., & Naidu, R. (2011). Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism. Water Research, 45, 3481–3488.

    CAS  Google Scholar 

  • Zhang, X., Lin, Y., Shan, X. Q., Chen, Z. (2010). Degradation of 2,4,6-trinitrotoluene (TNT) from explosive wastewater using nanoscale zero-valent iron. Chemical Engineering Journal, 158, 566–570.

  • Zhang, R., Li, J., Liu, C., Shen, J., Sun, X., Han, W., & Wang, L. (2013). Reduction of nitrobenzeneusing nanoscale zero-valent iron confined in channels of ordered mesoporoussilica. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 425, 108–114.

    CAS  Google Scholar 

  • Zhu, H.J., Jia, Y. F., Wu, X., Wang, H. (2009). Removal of arsenic from water by sup-ported nano zerovalent iron on activated carbon. Journal of Hazardous Material, 172, 1591–1596.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antônio Thomé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomé, A., Reddy, K.R., Reginatto, C. et al. Review of Nanotechnology for Soil and Groundwater Remediation: Brazilian Perspectives. Water Air Soil Pollut 226, 121 (2015). https://doi.org/10.1007/s11270-014-2243-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2243-z

Keywords

Navigation