Skip to main content

Advertisement

Log in

Simulation of CO2 and Attribution Analysis at Six European Peatland Sites Using the ECOSSE Model

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, we simulated heterotrophic CO2 (Rh) fluxes at six European peatland sites using the ECOSSE model and compared them to estimates of Rh made from eddy covariance (EC) measurements. The sites are spread over four countries with different climates, vegetation and management. Annual Rh from the different sites ranged from 110 to 540 g C m−2. The maximum annual Rh occurred when the water table (WT) level was between −10 and −25 cm and the air temperature was above 6.2 °C. The model successfully simulated seasonal trends for the majority of the sites. Regression relationships (r 2) between the EC-derived and simulated Rh ranged from 0.28 to 0.76, and the root mean square error and relative error were small, revealing an acceptable fit. The overall relative deviation value between annual EC-derived and simulated Rh was small (−1 %) and model efficiency ranges across sites from −0.25 to +0.41. Sensitivity analysis highlighted that increasing temperature, decreasing precipitation and lowering WT depth could significantly increase Rh from soils. Thus, management which lowers the WT could significantly increase anthropogenic CO2, so from a carbon emissions perspective, it should be avoided. The results presented here demonstrate a robust basis for further application of the ECOSSE model to assess the impacts of future land management interventions on peatland carbon emissions and to help guide best practice land management decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alm, J., Schulman, L., Walden, J., Nykanen, H., Martikainen, P. J., & Silvola, J. (1999). Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology, 80, 161–174.

    Article  Google Scholar 

  • Aubinet M., Vesala T., Papale D. E. (2012). Covariance: A Practical Guide to Measurement and Data Analysis (Eds.), Spring Atmos Sci, ISSN 2194–5217.

  • Aurela, M., Laurila, T., & Tuovinen, J.-P. (2002). Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux. Journal of Geophysical Research, 107, 4607. doi:10.1029/2002JD002055.

    Article  Google Scholar 

  • Aurela, M., Riutta, T., Laurila, T., Tuovinen, J.-P., Vesala, T., Tuittila, E.-S., Rinne, J., Haapanalen, S., & Laine, J. (2007). CO2 exchange of a sedge fen in southern Finland-the impact of a drought period. Tellus B, 59, 826–837.

    Article  Google Scholar 

  • Aurela, M., Lohila, A., Tuovinen, J.-P., Hatakka, J., Riutta, T., Laurila, T. (2009). Carbon dioxide exchange on a northern boreal fen. Boreal Environment Research, 14, 699–710.

  • Belyea, L. R., & Malmer, N. (2004). Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Global Change Biology, 10, 1043–1052.

    Article  Google Scholar 

  • Bergman, I., Lundberg, P., & Nilsson, M. (1999). Microbial carbon mineralisation in an acid surface peat; effects of changing environmental conditions for laboratory incubations. Soil Biology and Biochemistry, 31, 1867–1877.

    Article  CAS  Google Scholar 

  • Bradbury, N. J., Whitmore, A. P., Hart, P. B. S., & Jenkinson, D. S. (1993). Modelling the fate of nitrogen in crop and soil in the years following the application of 15 N-labelled fertilizer to winter wheat. Journal of Agricultural Science, 121, 363–379.

    Article  CAS  Google Scholar 

  • Cai, Z., Swamoto, T., Li, C., Kang, G., Boonjawat, J., Mosier, A., Wassmann, R., & Tsuruta, H. (2003). Field validation of the DNDC-model for greenhouse gas emissions in East Asian cropping systems. Global Biogeochemical Cycles, 17, 1107.

    Article  Google Scholar 

  • Carrasco, J. J., Neff, J. C., & Harden, J. W. (2006). Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil. Journal of Geophysical Research, 111, G02004.

    Article  Google Scholar 

  • Chen, H., Yao, S. P., Wu, N., Wang, Y. F., Luo, P., Tian, J. P., & Gao, Y. H. (2008). Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoige Plateau and their implications. Journal of Geophysical Research, 113, D12303.

    Article  Google Scholar 

  • Christensen, T. R., Jonasson, S., Callaghan, T. V., & Havstrom, M. (1999). On the potential CO2 release from tundra soils in a changing climate. Applied Soil Ecology, 11, 127–134.

    Article  Google Scholar 

  • Clay, G. D., & Worrall, F. (2013). The response of CO2 fluxes from a peat soil to variation in simulated sheep trampling. Geoderma, 197–198, 59–66.

    Article  Google Scholar 

  • Coleman, K., & Jenkinson, D. S. (1996). RothC-26.3: a model for the turnover of carbon in soil. In D. S. Powlson, P. Smith, & J. U. Smith (Eds.), Evaluation of soil organic matter models using existing, long-term datasets, NATO ASI Series I (Vol. 38, pp. 237–246). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Couwenberg J. (2011). Greenhouse gas emissions from managed peat soils: is the IPCC reporting guidance realistic? Mires and Peat, Volume 8 (2011); Article 02: 1–10. http://www.mires-and-peat.net/, ISSN 1819-754X, International Mire Conservation Group and International Peat Society.

  • Dinsmore, K. J., Skiba, U. M., Billett, M. F., & Rees, R. M. (2009). Effect of water table on greenhouse gas emissions from peatland mesocosms. Plant and Soil, 318, 229–242.

    Article  CAS  Google Scholar 

  • Dise, N. B. (2009). Peatland response to global change. Science, 326, 810–11.

    Article  CAS  Google Scholar 

  • Drewer, J., Lohila, A., Aurela, M., Laurila, T., Minkkinen, K., Penttila, T., Dinsmore, K. J., McKenzie, R. M., Helfter, C., Flechard, C., Sutton, M. A., & Skiba, U. M. (2010). Comparison of greenhouse gas fluxes and nitrogen budgets from an ombotrophic Bog in Scotland and a minerotrophic sedge Fen in Finland. European Journal of Soil Science, 6, 640–650.

    Article  Google Scholar 

  • Drösler M., Augustin J., Förster C., Freibauer A., Höper H., Kantelhardt J., Liebersbach H., Minke M., Petschow U., Schaller L., Schägner P., Sommer M., Zinecker F. (2008). GHG exchange and economic effects of climate-friendly peatland management in Germany, Proceedings of the 13th International Peat Congress, Tullamore 8–13 June, (Ireland).

  • Ehleringer, J. R., Buchmann, N., & Flanagan, L. B. (2000). Carbon isotope ratios in below-ground carbon cycle processes. Ecological Applications, 10, 412–422.

    Article  Google Scholar 

  • Fan, Z., Neff, J. C., Harden, J., & Wickland, K. P. (2008). Boreal soil carbon dynamics under a changing climate: a model inversion approach. Journal of Geophysical Research, 113, G04016.

    Google Scholar 

  • Fan, Z., Mcguire, A. D., Turetsky, M. R., Harden, J. W., Waddington, J. M., & Kanek, E. S. (2013). The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change. Global Change Biology, 19, 604–620.

    Article  Google Scholar 

  • FAO. (1998). World Reference Base for Soil Resources. World Soil Resources Report No. 84, FAO, Rome, 88 pp.

  • Freibauer, A., Rounsevell, M., Smith, P., & Verhagen, A. (2004). Carbon sequestration in the agricultural soils of Europe. Geoderma, 122, 1–23.

    Article  CAS  Google Scholar 

  • Frolking, S., Roulet, N. T., & Fuglestvedt, J. (2006). How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. Journal of Geophysical Research, 111, G01008.

    Google Scholar 

  • Global Peatland Initiative. (2002). Agreement between DGIS and wetlands international relating to cooperation for the conservation and wise use of wetlands. Activity WW012502, Document DML/BD-240/01, Wageningen, December.

  • Hardie, S. M. L., Garnett, M. H., Fallick, A. E., Ostle, N. J., & Rowland, A. P. (2009). Bomb 14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma, 153, 393–401.

    Article  CAS  Google Scholar 

  • Harrison, A. F., Harkness, D. D., Rowland, A. P., Garnett, J. S., & Bacon, P. J. (2000). Annual carbon and nitrogen fluxes along a European forest transect determined using 14C-bomb. In E. D. Schulze (Ed.), Chapter 11 (pp. 237–256). Heidelberg: Carbon and Nitrogen Cycling in European Forest Ecosystems. Springer Verlag.

    Google Scholar 

  • Hendriks, D. M. D., van Huissteden, J., Dolman, A. J., & van Der Molen, M. K. (2007). The full greenhouse gas balance of an abandoned peat meadow. Biogeosciences, 4, 411–24.

    Article  CAS  Google Scholar 

  • Huang, S. M., Yang, Y. Q., & Wang, Y. P. (2003). A critical look at procedures for validating growth and yield models. In A. Amaro, D. Reed, & P. Soares (Eds.), Modelling forest systems (pp. 271–294). Guildford: CABI Publishing.

    Google Scholar 

  • Humphreys, E. R., Lafleur, P. M., Flanagan, L. B., Hedstrom, N., Syed, K. H., Glenn, A. J., & Granger, R. (2006). Summer carbon dioxide and water vapor fluxes across a range of northern peatlands. Journal of Geophysical Research, 111, G04011.

    Article  Google Scholar 

  • IPCC. (2006). IPCC guidelines for national greenhouse gas inventories. In H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.), Prepared by the National Greenhouse Gas Inventories Programme. Japan: IGES.

    Google Scholar 

  • Jenkinson, D. S., & Rayner, J. H. (1977). The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science, 123, 298–305.

    Article  CAS  Google Scholar 

  • Jenkinson, D. S., Hart, P. B. S., Rayner, J. H., & Parry, L. C. (1987). Modelling the turnover of organic matter in long-term experiments at Rothamsted. Intecol Bulletin, 15, 1–8.

    Google Scholar 

  • Joosten, H., Sirin, A., Couwenberg, J., Laine, J., & Smith, P. (2012). The role of peatlands in climate regulation. In A. Bonn, T. Allott, M. Evans, H. Joosten, & R. Stoneman (Eds.), Peatland restoration and ecosystem services. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Kasimir-Klemedtsson, A., Klemdtsson, L., Berglund, K., Martikainen, P. J., Silvola, J., & Oenema, O. (1997). Greenhouse gas emissions from farmed organic soils: a review. Soil Use and Management, 13, 245–250.

    Article  Google Scholar 

  • Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., Stoy, P., & Wohlfahrt, G. (2010). Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology, 16, 187–208.

    Article  Google Scholar 

  • Lindroth, A., Lund, M., Nilsson, M., Aurela, M., Christensen, T. R., Laurila, T., Rinne, J., Riutta, T., Sagerfors, J., Ström, L., Tuovinen, J. P., & Vesala, T. (2007). Environmental controls on the CO2 exchange in north European mires. Tellus B, 59, 812–825.

    Article  Google Scholar 

  • Lloyd, C. R. (2006). Annual carbon balance of a managed wetland meadow in the Somerset Levels, UK. Agricultural and Forest Meteorology, 138, 168–179.

    Article  Google Scholar 

  • Lund, M., Lindroth, A., Christensen, T. R., & Strom, L. (2007). Annual CO2 balance of a temperate bog. Tellus, 59B, 804–811.

    Article  CAS  Google Scholar 

  • Lund, M., Lafleur, P. M., Rouletz, N. T., Lindroth, A., Christensen, T. R., Aurela, M., Chojnicki, B. H., Flanagank, L. B., Humphreys, E. R., Laurila, T., Oechel, W. C., Olejnik, J., Rinne, J. R., Schubert, P., & Nilsson, M. B. (2010). Variability in exchange of CO2 across 12 northern peatland and tundra sites. Global Change Biology, 16, 2436–2448.

    Google Scholar 

  • Lund, M., Christensen, T. R., Lindroth, A., & Schubert, P. (2012). Effects of drought conditions on the carbon dioxide dynamics in a temperate peatland. Environmental Research Letters, 7, 045704.

    Article  Google Scholar 

  • Maanavilja, L., Riutta, T., Aurela, M., Pulkkinen, M., Laurila, T., & Tuittila, E.-S. (2010). Spatial variation in CO2 exchange at a northern aapa mire. Biogeochemistry, 104, 325–345.

    Article  Google Scholar 

  • McMillen, R. T. (1988). An eddy correlation technique with exended applicability to non-simple terrain. Boundary-Layer Meteorology, 43, 231–245.

    Article  Google Scholar 

  • Montanarella L, Jones RJA, Hiederer R. (2006). The distribution of peatland in Europe. Mires and Peat, Volume 1, Article 01, http://www.mires-and-peat.net, ISSN 1819-754X.

  • Moore, P. D. (2002). The future of cool temperate bogs. Environmental Conservation, 29, 3–20.

    Article  CAS  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models-part 1: a discussion of principles. Journal of Hydrology, 10, 282–290.

    Article  Google Scholar 

  • Oren, R., Hsieh, C. I., Stoy, P., Albertson, J., McCarthy, H. R., Harrell, P., & Katul, G. G. (2006). Estimating the uncertainty in annual net ecosystem carbon exchange: spatial variation in turbulent fluxes and sampling errors in eddy-covariance measurements. Global Change Biology, 12, 883–896.

    Article  Google Scholar 

  • Rannik, U., Kolari, P., Vesala, T., & Hari, P. (2006). Uncertainties in measurement and modelling of net ecosystem exchange of a forest. Agriculture and Forestry Meteorology, 138, 244–257.

    Article  Google Scholar 

  • Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J. M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., & Valentini, R. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424–1439.

    Article  Google Scholar 

  • Rieley JO, Page SE. (2005). Wise Use of Tropical Peatlands-Focus on Southeast Asia (eds), Alterra, Wageningen. The Netherlands. (http://www.restorpeat.alterra.wur.nl/p_download.htm).

  • Sagerfors, J., Lindroth, A., Grelle, A., Klemedtsson, L., Weslien, P., & Nilsson, M. (2008). Annual CO2 exchange between a nutrientpoor, minerotrophic, boreal mire and the atmosphere. Journal of Geophysical Research, 113(G1), G01001–G01015.

    Article  Google Scholar 

  • Schrier-Uijl, A. P., Kroon, P. S., Leffelaar, P. A., van Huissteden, J. C., Berendse, F., & Veenendaal, E. M. (2010). Methane emissions in two drained peat agro-ecosystems with high and low agricultural intensity. Plant and Soil, 329, 509–520.

    Article  CAS  Google Scholar 

  • Schuur, E. A. G., & Trumbore, S. E. (2006). Partitioning sources of soil respiration in boreal black spruce forest using radiocarbon. Global Change Biology, 12, 165–176.

    Article  Google Scholar 

  • Smith, J. U., & Glendining, M. J. (1996). A decision support system for optimising the use of nitrogen in crop rotations. Rotations and cropping systems. Aspects of Applied Biology, 47, 103–110.

    Google Scholar 

  • Smith, J., & Smith, P. (2007). Environmental modelling: an introduction (pp. 1–178). UK: Oxford University Press.

    Google Scholar 

  • Smith, P., Smith, J. U., Powlson, D. S., McGill, W. B., Arah, J. R. M., Chertov, O. G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D. S., Jensen, L. S., Kelly, R. H., Klein-Gunnewiek, H., Komarov, A., Li, C., Molina, J. A. E., Mueller, T., Parton, W. J., Thornley, J. H. M., & Whitmore, A. P. (2007). A comparison of the performance of nine soil organic matter models using seven long-term experimental datasets. Geoderma, 81, 153–225.

    Article  Google Scholar 

  • Smith, J., Gottschalk, P., Bellarby, J., Richards, M., Nayak, D., Coleman, K., Hillier, J., Wattenbach, M., Aitkenhead, M., Yeluripurti, J., Farmer, J., & Smith, P. (2010a). Model to estimate carbon in organic soils-sequestration and emissions (ECOSSE) user-manual (pp. 1–76). UK: University of Aberdeen.

    Google Scholar 

  • Smith, J. U., Gottschalk, P., Bellarby, J., Chapman, S., Lilly, A., Towers, W., Bell, J., Coleman, K., Nayak, D. R., Richards, M. I., Hillier, J., Flynn, H. C., Wattenbach, M., Aitkenhead, M., Yeluripurti, J. B., Farmer, J., Milne, R., Thomson, A., Evans, C., Whitmore, A. P., Falloon, P., & Smith, P. (2010b). Estimating changes in national soil carbon stocks using ECOSSE—a new model that includes upland organic soils. Part I. Model description and uncertainty in national scale simulations of Scotland. Climate Research, 45, 179–192.

    Article  Google Scholar 

  • Smith, J. U., Gottschalk, P., Bellarby, J., Chapman, S., Lilly, A., Towers, W., Bell, J., Coleman, K., Nayak, D. R., Richards, M. I., Hillier, J., Flynn, H. C., Wattenbach, M., Aitkenhea, M., Yeluripurti, J. B., Farmer, J., Milne, R., Thomson, A., Evans, C., Whitmore, A. P., Falloon, P., & Smith, P. (2010c). Estimating changes in national soil carbon stocks using ECOSSE-a new model that includes upland organic soils. Part II. Application in Scotland. Climate Research, 45, 193–205.

    Article  Google Scholar 

  • Sulman, B. N., Desai, A. R., Saliendra, N. Z., Lafleur, P. M., Flanagan, L. B., & Sonnentag, O. (2010). CO2 fluxes at northern fens and bogs have opposite responses to inter-annual fluctuations in water table. Geophysical Research Letters, 37(19), L19702.

    Article  Google Scholar 

  • Tarnocai, C. (2006). The effect of climate change on carbon in Canadian peatlands. Global and Planetary Change, 53(4), 222–232.

    Article  Google Scholar 

  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38, 55–94.

    Article  Google Scholar 

  • Van den Bos, R. M. (2003). Restoration of former wetlands in the Netherlands; effect on the balance between CO2 sink and CH4 source. Netherlands Journal of Geosciences, 82, 325–332.

    Google Scholar 

  • Van Huissteden, J., Van den Bos, R. M., & Marticorena, A. I. (2006). Modeling the effect of water-table management on CO2 and CH4 fluxes from peat soils. Netherlands Journal of Geosciences, 85, 3–18.

    Google Scholar 

  • Ward, P. J., Aerts, J. C. J. H., De Moel, H., & Renssen, H. (2007a). Verification of a coupled climate- hydrological model against Holocene palaeo-hydrological records. Global and Planetary Change, 57, 283–300.

    Article  Google Scholar 

  • Ward, S. E., Bardgett, R. D., McNamara, N. P., Adamson, J. K., & Ostle, N. J. (2007b). Long-term consequences of grazing and burning on northern peatland carbon dynamics. Ecosystems, 10, 1069–1083.

    Article  CAS  Google Scholar 

  • Wu, L., & McGechan, M. B. (1998). A review of carbon and nitrogen processes in four soil nitrogen dynamics models. Journal of Agricultural Engineering Research, 69, 279–305.

    Article  Google Scholar 

  • Wu, J., Roulet, N. T., Sagerfors, J., & Nilsson, M. (2013). Simulation of six years of carbon fluxes for a sedge-dominated oligotrophic minerogenic peatland in Northern Sweden using McGill wetland model. Journal of Geophysical Research – Biogeosciences, 18, 795–807.

    Article  Google Scholar 

  • Ye, R., Jin, Q., Bohannan, B., Keller, J. K., Mc Allister, S. A., & Bridgham, S. D. (2012). pH controls over anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in peatlands across an ombrotrophic- minerotrophic gradient. Soil Biology and Biochemistry, 54, 36–47.

    Article  CAS  Google Scholar 

  • Yi, C., Ricciuto, D., Li, R., Wolbeck, J., Xu, X., et al. (2010). Climate control of terrestrial carbon exchange across biomes and continents. Environmental Research Letters, 5, 034007.

    Article  Google Scholar 

  • Yu, Z. C. (2012). Northern peatland carbon stocks and dynamics: a review. Biogeosciences, 9, 4071–4085.

    Article  CAS  Google Scholar 

  • Zhuang, Q., McGuire, A. D., O’Neill, K. P., Harden, J. W., Romanovsky, V., & Yarie, J. (2003). Modeling the soil thermal and carbon dynamics of a fire chrono-sequence in Interior Alaska. Journal of Geophysical Research, 107, 8147.

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the European Union (GHG-Europe project). Measurements at Auchencorth Moss were further supported by the European Projects CarboEurope, NitroEurope and ÉCLAIRE. Measurements at Fäjemyr were supported by NECC, a Nordic centre of excellence, and LUCCI, financed by Swedish research council VR. Measurements at Degerö Stormyr were supported by NECC, a Nordic centre of excellence, FORMAS research council and Kempe Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abdalla.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 590 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalla, M., Hastings, A., Bell, M.J. et al. Simulation of CO2 and Attribution Analysis at Six European Peatland Sites Using the ECOSSE Model. Water Air Soil Pollut 225, 2182 (2014). https://doi.org/10.1007/s11270-014-2182-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2182-8

Keywords

Navigation