Skip to main content
Log in

Study of Phenol and Nicotine Adsorption on Nitrogen-Modified Mesoporous Carbons

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this work, a mesoporous carbon material was modified by nitrogen atom by two different ways. The X-ray photoelectron spectroscopy (XPS) results show that the N atoms at the surface mainly exist in pyridine- and pyridone-like forms (around 80 % in atom ratio). The adsorption capacity of phenol and nicotine on mesoporous carbon and two N-containing mesoporous carbons was studied through adsorption isotherms. The adsorption isotherms were interpreted by three models (Freundlich, Langmuir, and Sips equations). Heat-flow microcalorimetry in liquid phase was used to determine the bonding strength between the organic pollutants and the surface of the adsorbents. In addition, the possibility of regeneration of adsorbents was investigated by temperature-programmed desorption (TPD) technique. The obtained values of differential heats and isotherms showed the heterogeneous properties of the mesoporous carbon materials. Comparing the different results obtained from the experiments, the surface area is a key factor for the adsorption of phenol and nicotine in water. The introduction of N improved the adsorption of phenol but did not affect the adsorption of nicotine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Babić, B., Kokunešoski, M., Miljković, M., Matović, B., Gulicovski, J., Stojmenović, M., et al. (2013). New mesoporous carbon materials synthesized by a templating procedure. Ceramics International, 39, 4035–4043.

    Article  Google Scholar 

  • Bertoncini, C., Raffaelli, J., Fassino, L., Odetti, H. S., & Bottani, E. J. (2003). Phenol adsorption on porous and non-porous carbons. Carbon, 41, 1101–1111.

    Article  CAS  Google Scholar 

  • Cañizares, P., Carmona, M., Baraza, O., Delgado, A., & Rodrigo, M. A. (2006). Adsorption equilibrium of phenol onto chemically modified activated carbon F400. Journal of Hazardous Materials, B131, 243–248.

    Article  Google Scholar 

  • Castillejos, E., Rodríguez-Ramos, I., Sánchez, M. S., Muñoz, V., & Guerrero-Ruiz, A. (2011). Phenol adsorption from water solutions over microporous and mesoporous carbon surfaces: a real time kinetic study. Adsorption, 17, 483–488.

    Article  CAS  Google Scholar 

  • Chakraborty, A., Deva, D., Sharma, A., & Verma, N. (2011). Adsorbents based on carbon microfibers and carbon nanofibers for the removal of phenol and lead from water. Journal of Colloid and Interface Science, 359, 228–239.

    Article  CAS  Google Scholar 

  • Chen, H., Sun, F., Wang, J., Li, W., Qiao, W., Ling, L., et al. (2013). Nitrogen doping effect on the physical and chemical properties of mesoporous carbons. The Journal of Physical Chemistry C, 117, 8318–8328.

    Article  CAS  Google Scholar 

  • Chen, Y. D., Huang, M. J., Huang, B., & Chen, X. R. (2012). Mesoporous activated carbon from inherently potassium-rich pokeweed by in situ self-activation and its use for phenol removal. Journal of Analytical and Applied Pyrolysis, 98, 159–165.

    Article  CAS  Google Scholar 

  • Chen, Z., Zhang, L., Tang, Y., & Jia, Z. (2006). Adsorption of nicotine and tar from the mainstream smoke of cigarettes by oxidized carbon nanotubes. Applied Surface Science, 252, 2933–2937.

    Article  CAS  Google Scholar 

  • Chiaci, M., Abbaspur, A., Kia, R., & Seyedeyn-Azad, F. (2004). Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41. Separation and Purification Technology, 40, 217–229.

    Article  Google Scholar 

  • Dąbrowski, A., Podkościelny, P., Hubicki, Z., & Barczak, M. (2005). Adsorption of phenolic compounds by activated carbon—a critical review. Chemosphere, 58, 1049–1070.

    Article  Google Scholar 

  • Damjanović, L., Rakić, V., Rac, V., Stošić, D., & Auroux, A. (2010). The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents. Journal of Hazardous Materials, 184, 477–484.

    Article  Google Scholar 

  • Dragoi, B., Dumitriu, E., Guimon, C., & Auroux, A. (2009). Acidic and adsorptive properties of SBA-15 modified by aluminum incorporation. Microporous and Mesoporous Materials, 121, 7–17.

    Article  CAS  Google Scholar 

  • Fierro, V., Torné-Fernández, V., Montané, D., & Celzard, A. (2008). Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous and Mesoporous Materials, 111, 276–284.

    Article  CAS  Google Scholar 

  • Gerard-Gomez, C., Dufaux, M., Morel, J., Naccache, C., & Taarit, Y. B. (1997). Catalytic oxidation of nicotine over zeolite-supported platinum. Applied Catalysis A: General, 165, 371–377.

    Article  CAS  Google Scholar 

  • He, J., Ma, K., Jin, J., Dong, Z., Wang, J., & Li, R. (2009). Preparation and characterization of octyl-modified ordered mesoporous carbon CMK-3 for phenol adsorption. Microporous and Mesoporous Materials, 121, 173–177.

    Article  CAS  Google Scholar 

  • Huang, Y., Hu, S., Zuo, S., Xu, Z., Han, C., & Shen, J. (2009). Mesoporous carbon materials prepared from carbohydrates with a metal chloride template. Journal of Materials Chemistry, 19, 7759–7764.

    Article  CAS  Google Scholar 

  • Huang, Y., Yang, F., Xu, Z., & Shen, J. (2011). Nitrogen-containing mesoporous carbons prepared from melamine formaldehyde resins with CaCl2 as a template. Journal of Colloid and Interface Science, 363, 193–198.

    Article  CAS  Google Scholar 

  • Karolczyk, J., Janus, M., & Przepiórski, J. (2013). Removal of model contaminants from water by porous carbons obtained through carbonization of poly(ethylene terephthalate) mixed with some magnesium compounds. Journal of Porous Materials, 20, 159–170.

    Article  CAS  Google Scholar 

  • Kennedy, L. J., Vijaya, J. J., Kayalvizhi, K., & Sekaran, G. (2007). Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage process. Chemical Engineering Journal, 132, 279–287.

    Article  CAS  Google Scholar 

  • Koh, M., & Nakajima, T. (2000). Adsorption of aromatic compounds on CxN-coated activated carbon. Carbon, 38, 1947–1954.

    Article  CAS  Google Scholar 

  • László, K., Tombácz, E., & Novák, C. (2007). pH-dependent adsorption and desorption of phenol and aniline on basic activated carbon. Colloids and Surface A: Physicochemical and Engineering Aspects, 306, 95–101.

    Article  Google Scholar 

  • Lazarova, Z., & Boyadzhieva, S. (2004). Treatment of phenol-containing aqueous solutions by membrane-based solvent extraction in coupled ultrafiltration modules. Chemical Engineering Journal, 100, 129–138.

    Article  CAS  Google Scholar 

  • Leitão, A., & Serrão, R. (2005). Adsorption of phenolic compounds from water on activated carbon: prediction of multicomponent equilibrium isotherms using single-component data. Adsorption, 11, 167–179.

    Article  Google Scholar 

  • Li, D., Wu, Y., Feng, L., & Zhang, L. (2012). Surface properties of SAC and its adsorption mechanisms for phenol and nitrobenzene. Bioresource Technology, 113, 121–126.

    Article  CAS  Google Scholar 

  • Lorenc-Grabowska, E., Gryglewicz, G., & Diez, M. A. (2013). Kinetics and equilibrium study of phenol adsorption on nitrogen-enriched activated carbons. Fuel, 114, 235–243.

    Article  CAS  Google Scholar 

  • Mohanty, K., Das, D., & Biswas, M. N. (2005). Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation. Chemical Engineering Journal, 115, 121–131.

    Article  CAS  Google Scholar 

  • Nevskaia, D. M., Castillejos-Lopez, E., Guerrero-Ruiz, A., & Muñoz, V. (2004). Effects of the surface chemistry of carbon materials on the adsorption of phenol–aniline mixtures from water. Carbon, 42, 653–665.

    Article  CAS  Google Scholar 

  • Nevskaia, D. M., Santianes, A., Muñoz, V., & Guerrero-Ruíz, A. (1999). Interaction of aqueous solutions of phenol with commercial activated carbons: an adsorption and kinetic study. Carbon, 37, 1065–1074.

    Article  CAS  Google Scholar 

  • Park, K. H., Balathanigaimani, M. S., Shim, W. G., Lee, G. W., & Moon, H. (2010). Adsorption characteristics of phenol on novel corn grain-based activated carbons. Microporous and Mesoporous Materials, 127, 1–8.

    Article  CAS  Google Scholar 

  • Podkościelny, P., Dąbrowski, A., & Marijuk, O. V. (2003). Heterogeneity of active carbons in adsorption of phenol aqueous solutions. Applied Surface Science, 205, 297–303.

    Article  Google Scholar 

  • Rakić, V., Damjanović, L., Rac, V., Stošić, D., Dondur, V., & Auroux, A. (2010). The adsorption of nicotine from aqueous solutions on different zeolite structures. Water Research, 44, 2047–2057.

    Article  Google Scholar 

  • Raymundo-Piñero, E., Cazorla-Amorós, D., & Linares-Solano, A. (2003). The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres. Carbon, 41, 1925–1932.

    Article  Google Scholar 

  • Rodrigues, L. A., da Silva, M. L. C. P., Alvarez-Mendes, M. O., Coutinho, A. D. R., & Thim, G. P. (2011). Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chemical Engineering Journal, 174, 49–57.

    Article  CAS  Google Scholar 

  • Sabio, E., González-Martín, M. L., Ramiro, A., González, J. F., Bruque, J. M., Labajos-Broncano, L., et al. (2001). Influence of the regeneration temperature on the phenols adsorption on activated carbon. Journal of Colloid and Interface Science, 242, 31–35.

    Article  CAS  Google Scholar 

  • Salame, I. I., & Bandosz, T. J. (2003). Role of surface chemistry in adsorption of phenol on activated carbons. Journal of Colloid and Interface Science, 264, 307–312.

    Article  CAS  Google Scholar 

  • Su, F., Lv, L., Hui, T. M., & Zhao, X. S. (2005). Phenol adsorption on zeolite-templated carbons with different structural and surface properties. Carbon, 43, 1156–1164.

    Article  CAS  Google Scholar 

  • Terzyk, A. P. (2003). Further insights into the role of carbon surface functionalities in the mechanism of phenol adsorption. Journal of Colloid and Interface Science, 268, 301–329.

    Article  CAS  Google Scholar 

  • Timur, S., Kantarli, I. C., Onenc, S., & Yanik, J. (2010). Characterization and application of activated carbon produced from oak cups pulp. Journal of Analytical and Applied Pyrolysis, 89, 129–136.

    Article  CAS  Google Scholar 

  • Villacañas, F., Pereira, M. F. R., Órfão, J. J. M., & Figueiredo, J. L. (2006). Adsorption of simple aromatic compounds on activated carbons. Journal of Colloid and Interface Science, 293, 128–136.

    Article  Google Scholar 

  • Wang, S. N., Xu, P., Tang, H. Z., Meng, J., Liu, X. L., Huang, J., et al. (2004). Biodegradation and detoxification of nicotine in tobacco solid waste by a Pseudomonas sp. Biotechnology Letters, 26, 1493–1496.

    Article  CAS  Google Scholar 

  • Wu, Z., Webley, P. A., & Zhao, D. (2012). Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture. Journal of Materials Chemistry, 22, 11379–11389.

    Article  CAS  Google Scholar 

  • Yang, G., Chen, H., Qin, H., & Feng, Y. (2014). Amination of activated carbon for enhancing phenol adsorption: effect of nitrogen-containing functional groups. Applied Surface Science, 293, 299–305.

    Article  CAS  Google Scholar 

  • Yin, C. Y., Aroua, M. K., & Daud, W. M. A. W. (2007). Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Separation and Purification Technology, 52, 403–415.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the scientific services of IRCELYON. Jingxuan Cai gratefully acknowledges the China Scholarship Council for the financial support of his PhD grant and the financial support from the National Nature Science Foundation of China (21273105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Auroux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Bennici, S., Shen, J. et al. Study of Phenol and Nicotine Adsorption on Nitrogen-Modified Mesoporous Carbons. Water Air Soil Pollut 225, 2088 (2014). https://doi.org/10.1007/s11270-014-2088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2088-5

Keywords

Navigation