Skip to main content

Advertisement

Log in

Changes in Soil Dissolved Organic Carbon Affect Reconstructed History and Projected Future Trends in Surface Water Acidification

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Preindustrial (1850s) and future (2060) streamwater chemistry of an anthropogenically acidified small catchment was estimated using the MAGIC model for three different scenarios for dissolved organic carbon (DOC) concentrations and sources. The highest modeled pH = 5.7 for 1850s as well as for 2060 (pH = 4.4) was simulated given the assumption that streamwater DOC concentration was constant at the 1993 level. A scenario accounting for an increase of DOC as an inverse function of ionic strength (IS) of soilwater and streamwater resulted in much lower preindustrial (pH = 4.9) and future recovery to (pH = 4.1) if the stream riparian zone was assumed to be the only DOC source. If upland soilwater (where significant DOC increase was observed at −5 and −15 cm) was also included, DOC was partly neutralized within the soil and higher preindustrial pH = 5.3 and future pH = 4.2 were estimated. The observed DOC stream flux was 2–4 times higher than the potential carbon production of the riparian zone, implying that this is unlikely to be the sole DOC source. Modeling based on the assumption that stream DOC changes are solely attributable to changes in the riparian zone appears likely to underestimate preindustrial pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banwart, S., Menon, M., Bernasconi, S. M., Bloem, J., Blum, W. E. H., de Souza, D. M., et al. (2012). Soil processes and functions across an international network of critical zone observatories: introduction to experimental methods and initial results. Comptes Rendus Geoscience, 344, 758–772.

    Article  Google Scholar 

  • Battarbee, R. W., Monteith, D. T., Juggins, S., Evans, C. D., Jenkins, A., & Simpson, G. L. (2005). Reconstructing pre-acidification pH for an acidified Scottish loch: a comparison of paleolimnological and modelling approaches. Environmental Pollution, 137(1), 135–149.

    Article  CAS  Google Scholar 

  • Borken, W., Ahrens, B., Schulz, C., & Zimmermann, L. (2011). Site-to-site variability and temporal trends of DOC concentrations and fluxes in temperate forest soils. Global Change Biology, 17(7), 2428–2443.

    Article  Google Scholar 

  • Bragazza, L., Freeman, C., Jones, T., Rydin, H., Limpens, J., Fenner, N., et al. (2006). Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America, 103(51), 19386–19389.

    Article  CAS  Google Scholar 

  • Buzek, F., Hruška, J., & Krám, P. (1995). Three component model of runoff generation, Lysina catchment, Czech Republic. Water, Air, and Soil Pollution, 79, 391–408.

    Article  CAS  Google Scholar 

  • Clark, J. M., van der Heijden, G. M. F., Palmer, S. M., Chapman, P. J., & Bottrell, S. H. (2011). Variation in the sensitivity of DOC release between different organic soils following H2SO4 and sea-salt additions. European Journal of Soil Science, 62(2), 267–284.

    Article  CAS  Google Scholar 

  • Cosby, B. J., Hornberger, G. M., Galloway, J. N., & Wright, R. F. (1985). Modeling the effects of acid deposition: assessment of a lumped parameter model of soilwater and streamwater chemistry. Water Resources Research, 21, 51–63.

    Article  CAS  Google Scholar 

  • Cosby, B. J., Ferrier, R. C., Jenkins, A., & Wright, R. F. (2001). Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrology and Earth System Sciences, 5, 499–518.

    Article  Google Scholar 

  • Cunningham, L., Bishop, K., Mettavainio, E., & Rosen, P. (2011). Paleoecological evidence of major declines in total organic carbon concentrations since the nineteenth century in four nemoboreal lakes. Journal of Paleolimnology, 45(4), 507–518.

    Article  Google Scholar 

  • Driscoll, C. T. (1984). A procedure for the fractionation of aqueous aluminum in dilute acidic waters. International Journal of Analytical Chemistry, 16, 267–283.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Lehtinen, M. D., & Sullivan, T. J. (1994). Modeling the acid–base chemistry of organic solutes in Adirondack, New York, lakes. Water Resources Research, 30(2), 297–306.

    Article  CAS  Google Scholar 

  • Eimers, C. M., Watmough, S. A., Buttle, J. M., & Dillon, P. J. (2008). Examination of the potential relationship between droughts, sulphate and dissolved organic carbon at a wetland-draining stream. Global Change Biology, 14, 938–948.

    Article  Google Scholar 

  • Ekström, S. M., Kritzberg, E. S., Kleja, D. B., Larsson, N., Nilsson, P. A., Graneli, W., et al. (2011). Effect of acid deposition on quantity and quality of dissolved organic matter in soil-water. Environmental Science & Technology, 45(11), 4733–4739.

    Article  Google Scholar 

  • Erlandsson, M., Buffam, I., Fölster, J., Laudon, H., Temnerud, J., Weyhenmeyer, G. A., et al. (2008). Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Global Change Biology, 14, 1191–1198.

    Article  Google Scholar 

  • Erlandsson, M., Cory, N., Fölster, J., Köhler, S., Laudon, H., Weyhenmeyer, G. A., et al. (2011). Increasing dissolved organic carbon redefines the extent of surface water acidification and helps resolve a classic controversy. Bioscience, 61, 614–618.

    Article  Google Scholar 

  • Evans, C. D., Monteith, D. T., & Cooper, D. M. (2005). Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environmental Pollution, 137(1), 55–71.

    Article  CAS  Google Scholar 

  • Evans, C. D., Goodale, C., Caporn, S., Dise, N., Emmett, B., Fernandez, I., et al. (2008). Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? A review of evidence from field nitrogen addition experiments. Biogeochemistry, 91(1), 13–35.

    Article  CAS  Google Scholar 

  • Evans, C. D., Jones, T. G., Burden, A., Ostle, N., Zielinski, P., Cooper, M. D. A., et al. (2012). Acidity controls on dissolved organic carbon mobility in organic soils. Global Change Biology, 18(11), 3317–3331.

    Article  Google Scholar 

  • Fölster, J., Andrén, C., Bishop, K., Buffam, I., Cory, N., Goedkoop, W., et al. (2007). A novel environmental quality criterion for acidification in Swedish lakes—an application of studies on the relationship between biota and water chemistry. Water, Air, and Soil Pollution: Focus, 7, 331–338.

    Article  Google Scholar 

  • Gunnarsson, U. (2005). Global patterns of Sphagnum productivity. Journal of Bryology, 27, 269–279.

    Article  Google Scholar 

  • Holmberg, M., Vuorenmaa, J., Posch, M., Forsius, M., Lundin, L., Kleemola, S., et al. (2013). Relationship between critical load exceedances and empirical impact indicators at Integrated Monitoring sites across Europe. Ecological Indicators, 24, 256–265.

    Article  CAS  Google Scholar 

  • Hruška, J., & Krám, P. (1994). Aluminium chemistry of the root zone of forest soil affected by acid deposition at the Lysina catchment, Czech Republic. Ecological Engineering, 3, 5–16.

    Article  Google Scholar 

  • Hruška, J., & Krám, P. (2003). Modelling long-term changes in stream water and soil chemistry in catchments with contrasting vulnerability to acidification (Lysina and Pluhuv Bor, Czech Republic). Hydrology and Earth System Sciences, 7(4), 525–539.

    Article  Google Scholar 

  • Hruška, J., Köhler, S., Laudon, H., & Bishop, K. (2003). Is a universal model of organic acidity possible: comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zones. Environmental Science and Technology, 37, 1726–1730.

    Article  Google Scholar 

  • Hruška, J., Krám, P., McDowell, W. H., & Oulehle, F. (2009). Increased dissolved organic carbon (DOC) in central European streams is driven by reductions in ionic strength rather than climate change or decreasing acidity. Environmental Science & Technology, 43(12), 4320–4326.

    Article  Google Scholar 

  • Kopáček, J., & Veselý, J. (2005). Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmospheric Environment, 39, 2179–2188.

    Article  Google Scholar 

  • Kopáček, J., Hejzlar, J., Káňa, J., Norton, S. A., Porcal, P., & Turek, J. (2009). Trends in aluminium export from a mountainous area to surface waters, from deglaciation to the recent: effects of vegetation and soil development, atmospheric acidification, and nitrogen-saturation. Journal of Inorganic Biochemistry, 103(11), 1439–1448.

    Article  Google Scholar 

  • Krám, P., Hruška, J., Driscoll, C. T., & Johnson, C. E. (1995). Biogeochemistry of aluminum in a forest catchment in the Czech Republic impacted by atmospheric inputs of strong acids. Water, Air, and Soil Pollution, 85, 1831–1836.

    Article  Google Scholar 

  • Krám, P., Hruška, J., & Shanley, J. B. (2012). Streamwater chemistry in three contrasting monolithologic catchments. Applied Geochemistry, 27, 1854–1863.

    Article  Google Scholar 

  • Löfgren, S., & Zetterberg, T. (2011). Decreased DOC concentrations in soil water in forested areas in southern Sweden during 1987–2008. Science of the Total Environment, 409(10), 1916–1926.

    Article  Google Scholar 

  • Löfgren, S., Gustafsson, J. P., & Bringmark, L. (2010). Decreasing DOC trends in soil solution along the hillslopes at two IM sites in southern Sweden—geochemical modeling of organic matter solubility during acidification recovery. Science of the Total Environment, 409(1), 201–210.

    Article  Google Scholar 

  • Moldan, F., Hruška, J., Evans, C. D., & Hauhs, M. (2012). Experimental simulation of the effects of extreme climatic events on major ions, acidity and dissolved organic carbon leaching from a forested catchment, Gårdsjön, Sweden. Biogeochemistry, 107(1–3), 455–469.

    Article  CAS  Google Scholar 

  • Moldan, F., Cosby, B. J., & Wright, R. F. (2013). Modeling past and future acidification of Swedish lakes. Ambio, 42, 577–586.

    Article  Google Scholar 

  • Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M., Høgåsen, T., et al. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450, 537–540.

    Article  CAS  Google Scholar 

  • Oulehle, F., McDowell, W. H., Aitkenhead-Peterson, J. A., Krám, P., Hruška, J., Navrátil, T., et al. (2008). Long-term trends in stream nitrate concentrations and losses across watersheds undergoing recovery from acidification in the Czech Republic. Ecosystems, 11(3), 410–425.

    Article  CAS  Google Scholar 

  • Oulehle, F., Cosby, B. J., Wright, R. F., Hruška, J., Kopácek, J., Krám, P., et al. (2012). Modelling soil nitrogen: the MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics. Environmental Pollution, 165, 158–166.

    Article  CAS  Google Scholar 

  • Pärn, J., & Mander, U. (2012). Increased organic carbon concentrations in Estonian rivers in the period 1992–2007 as affected by deepening droughts. Biogeochemistry, 108, 351–358.

    Article  Google Scholar 

  • SanClements, S. D., Oelsner, G. P., McKnight, D. M., Stoddard, J. L., & Nelson, S. J. (2012). New insights into source of decadal increases of dissolved organic matter in acid-sensitive lakes of the Northern United States. Environmental Science & Technology, 46, 3212–3219.

    Article  CAS  Google Scholar 

  • Sarkkola, S., Koivusalo, H., Laurén, A., Kortelainen, P., Mattsson, T., Palvaiainen, M., et al. (2009). Trends in hydrometeorological conditions and streamwater organic carbon in boreal forested catchments. Science of the Total Environment, 408, 92–101.

    Article  CAS  Google Scholar 

  • Schecher, W. D., & Driscoll, C. T. (1987). An evaluation of uncertainty associated with aluminum equilibrium calculations. Water Resources Research, 23, 525–534.

    Article  CAS  Google Scholar 

  • Schöpp, W., Posch, M., Mylona, S., & Johansson, M. (2003). Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrology and Earth System Sciences, 7, 436–446.

    Article  Google Scholar 

  • SEPA. (2010). Status, potential and quality requirements for lakes, watercourses, coastal and transitional waters. In: Handbook 2007:4. 107 p, Stockholm, Swedish Environmental Protection Agency.

  • Stutter, M. I., Lumsdon, D. G., & Rowland, A. P. (2011). Three representative UK moorland soils show differences in decadal release of dissolved organic carbon in response to environmental change. Biogeosciences, 8(12), 3661–3675.

    Article  CAS  Google Scholar 

  • Tipping, E., Rowe, E. C., Evans, C. D., Mills, R. T. E., Emmett, B. A., Chaplow, J. S., et al. (2012). N14C: A plant-soil nitrogen and carbon cycling model to simulate terrestrial ecosystem responses to atmospheric nitrogen deposition. Ecological Modelling, 247, 11–26.

    Article  CAS  Google Scholar 

  • Wright, R. F., & Cosby, B. J. (2003). Future recovery of acidified lakes in southern Norway predicted by the MAGIC model. Hydrology and Earth System Sciences, 7, 467–485.

    Article  CAS  Google Scholar 

  • Zhang, J., Hudson, J., Neal, R., Sereda, J., Clair, T., Turner, M., et al. (2010). Long-term patterns of dissolved organic carbon in lakes across eastern Canada: evidence of a pronounced climate effect. Limnology and Oceanography, 55(1), 30–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by Operational Programme of the European Union (CZ.1.05/1.1.00/02.0073) the CzechGlobe—Center for Global Change Research, European Commission 7th Framework Program Project SoilTrEC No. 244118, and the Grant Agency of the Czech Republic No. 14-33311S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Hruška.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 89 kb)

Online Resource 2

(PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hruška, J., Krám, P., Moldan, F. et al. Changes in Soil Dissolved Organic Carbon Affect Reconstructed History and Projected Future Trends in Surface Water Acidification. Water Air Soil Pollut 225, 2015 (2014). https://doi.org/10.1007/s11270-014-2015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2015-9

Keywords

Navigation