Skip to main content

Advertisement

Log in

Impact of AMD Processes on the Water Dams of the Iberian Pyrite Belt: Overall Hydrochemical Characterization (Huelva, SW Spain)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the Iberian Pyrite Belt (IPB), the process of acid mine drainage (AMD) is anthropogenic in origin. The impact of AMD pollution processes is characterised in 23 dams in the IPB. Based on the pH values, three groups are established: group 1 (pH <3), group 2 (pH 3–5) and group 3 (pH >5). Group 1 has the lowest pH values, with all of them lower than 3 and a minimum value of 1.9. The pH values are higher in the other groups, with lower values in group 2 (between 2.34 and 6.15) and higher in group 3 (between 4.36 and 7.58). Conductivity is higher in group 1 (varying between 1,005 and 12,280 μScm−1), while it takes intermediate values in group 2 (between 139 and 2,652 μScm−1), and group 3 is the lowest (between 80 and 750 μScm−1). Among the ions analysed, the concentration of sulphates stands out due to its magnitude, which is always greater than that of the other ions in the three groups. It is in group 1 that it reaches the highest values, with 6,200 mg/L, while it is lower in the others. Applying variable cluster analysis shows that in group 1, pH exercises control over the dissolution of most of the metals. It is also sulphates that control the value for conductivity. In group 2, precipitation is the main variable that controls the dissolution of ions, with the influence of pH being lower. In group 3, it is observed that in pH control metals, conductivity is controlled by sulphates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aroba, J. (2003). Advances in the decision making in software development projects. Ph.D. Thesis. Spain: University of Sevilla.

    Google Scholar 

  • Bisquerra, R. (1989). Conceptual Introduction to Multivariate Analysis. Barcelona: PROMOC Public Univ.

    Google Scholar 

  • Borrego, J., Morales, J. A., de la Torre, M. L., & Grande, J. A. (2002). Geochemical characteristics of heavy metal pollution in surface sediments of the Tinto and Odiel river estuary (southwestern Spain). Environmental Geology, 41, 785–796.

    Article  CAS  Google Scholar 

  • Borrego, J., Carro, B., López-González, N., de la Rosa, J., Grande, J.A., Gómez, T. and de la Torre, M.L. (2011). Effect of acid mine drainage on dissolved rare earth elements geochemistry along a fluvial-estuarine systems: the Tinto-Odiel estuary (SW Spain). Hydrology Research. doi:10.216/nh.2011.012.

  • Cánovas, C. R., Olías, M., Nieto, J. M., Sarmiento, A. M., & Cerón, J. C. (2007). Hydrogeochemical characteristics of the Tinto and Odiel rivers (SW Spain). Factor controlling metal contents. Science of the Total Environment, 373, 363–382.

    Article  Google Scholar 

  • Cánovas, C. R., Hubbard, C. G., Olías, M., Nieto, J. M., Black, S., & Coleman, M. L. (2008). Hydrochemical variations and contaminant load in the Río Tinto (Spain) during flood events. Jounal of Hydrology, 350, 25–40.

    Article  Google Scholar 

  • Carro, B., López-González, N., Grande, J. A., Gómez, T., & Valente, T. (2011). Impact of acid mine drainage on the hydrochemical characteristics of the Tinto-Odiel estuary (SW Spain). Journal of Iberian Geology, 37(1), 87–96.

    Article  Google Scholar 

  • Davis, J. C. (1986). Statistics and data analysis in Geology. Singapore: John Wiley and Sons.

    Google Scholar 

  • de la Torre, M. L., Grande, J. A., Jiménez, A., Borrego, J., & Díaz Curiel, J. M. (2009). Time evolution of an AMD-affected river chemical makeup. Water Res. Manag., 23(7), 1275–1289.

    Article  Google Scholar 

  • de la Torre, M. L., Sánchez-Rodas, D., Grande, J. A., & Gómez, T. (2010). Relationships between pH, colour and heavy metal concentrations in the Tinto and Odiel rivers (Southwest Spain). Hydrology Research, 41(5), 406–413.

    Article  Google Scholar 

  • de la Torre, M. L., Grande, J. A., Graiño, J., Gómez, T., & Cerón, J. C. (2011). Characterization of AMD pollution in the river Tinto (SW Spain). Geochemical comparison between generating source and receiving environment. Water, Air, and Soil Pollution, 216, 3–19.

    Article  CAS  Google Scholar 

  • Elbaz-Poulichet, F., Morley, N. H., Cruzado, A., Velasquez, Z., Achterberg, E. P., & Braungardt, C. B. (1999). Trace metal and nutrient distribution in an extremely low pH (2.5) river-estuarine system, the Ria of Huelva (south-west Spain). The Science of the Total Environment, 227, 73–83.

    Article  CAS  Google Scholar 

  • Elbaz-Poulichet, F., Braungardt, C., Achterberg, E., Morley, N., Cossa, D., Beckers, J., Nomérange, P., Cruzado, A., & Leblanc, M. (2001). Metal biogeochemistry in the Tinto-Odiel rivers (Southern Spain) and in the Gulf of Cadiz: a synthesis of the results of TOROS project. Continental Shelf Research, 21(18–19), 1961–1973.

    Article  Google Scholar 

  • Fernández, I., Olías, M., Cerón, J. C., & De La Rosa, J. (2005). Application of lead stable isotopes to the Guadiamar Aquifer study after the mine tailings spill in Aznalcóllar (SW Spain). Environmental Geology, 47, 197–204.

    Article  Google Scholar 

  • Grande, J. A., Sáinz, A., de la Torre, M. L., & López, N. (2000). Characterization of AMD and ARD processes in the Odiel River basin by applying univariate. Ingeopres, 88, 52–60.

    Google Scholar 

  • Grande, J. A., Borrego, J., Morales, J. A., & de la Torre, M. L. (2003a). A description of how metal pollution occurs in the Tino-Odiel rias (Huelva-Spain) through the application of cluster analysis. Marine Pollution Bulletin, 46, 475–480.

    Article  CAS  Google Scholar 

  • Grande, J. A., Borrego, J., de la Torre, M. L., & Sáinz, A. (2003b). Application of cluster analysis to the geochemistry zonation of the estuary waters in the Tinto and Odiel rivers (Huelva, Spain). Environmental Geochemistry and Health, 25, 233–246.

    Article  CAS  Google Scholar 

  • Grande, J. A., Beltrán, R., Sáinz, A., Santos, J. C., de la Torre, M. L., & Borrego, J. (2005a). Acid mine drainage and acid rock drainage processes in the environment of Herrerías Mine (Iberian Pyrite Belt, Huelva-Spain) and impact on the Andevalo dam. Environmental Geology, 47, 185–196.

    Article  CAS  Google Scholar 

  • Grande, J. A., Andújar, J. M., Aroba, J., de la Torre, M. L., & Beltrán, R. (2005b). Precipitation, pH and metal load in AMD river basins: an application of fuzzy clustering algorithms to the process characterization. Journal of Environmental Monitoring, 7, 325–334.

    Article  CAS  Google Scholar 

  • Grande, J. A., de la Torre, M. L., Cerón, J. C., Beltrán, R., & Gómez, T. (2010a). Overall hydrochemical characterization of the Iberian Pyrite Belt. Main acid mine drainage-generating sources (Huelva, SW Spain). Journal of Hydrology, 390, 123–130.

    Article  CAS  Google Scholar 

  • Grande, J. A., Andújar, J. M., Aroba, J., Beltrán, R., de la Torre, M. L., Cerón, J. C., & Gómez, T. (2010b). Fuzzy modelling of the spatial evolution of the chemistry in the Tinto river (SW Spain). Water Resources Management, 24, 3219–3235.

    Article  Google Scholar 

  • Grande, J. A., Andújar, J. M., Aroba, J., & de la Torre, M. L. (2010c). Presence of As in the fluvial network due to AMD processes in the Riotinto mining area (SW Spain): a fuzzy logic qualitative model. Journal of Hazardous Materials, 176(1–3), 395–401.

    Article  CAS  Google Scholar 

  • Grande, J. A., Jiménez, A., Romero, S., de la Torre, M. L., & Gómez, T. (2010d). Quantification of heavy metals from AMD discharged into a public water supply dam in the Iberian Pyrite Belt (SW Spain) using centered moving average. Water, Air, and Soil Pollution, 212, 299–307.

    Article  CAS  Google Scholar 

  • Grande, J. A., Jiménez, A., Borrego, J., de la Torre, M. L., & Gómez, T. (2010e). Relationships between conductivity and pH in channels exposed to acid mine drainage processes: study of a large mass of data using classical statistics. Water Resources Management, 24, 4579–4587.

    Article  Google Scholar 

  • Grande, J. A., Aroba, J., Andujar, J. M., Gómez, T., de la Torre, M. L., Borrego, J., Romero, S., Barranco, C., & Santisteban, M. (2011a). Tinto versus Odiel: two AMD polluted rivers and an unresolved issue. An artificial intelligence approach. Water Resources Management, 25, 3575–3594.

    Article  Google Scholar 

  • Grande, J.A., de la Torre, M.L, Cerón, J.C, Sánchez-Rodas, D., Beltrán, R. (2011b). Arsenic speciation in the Riotinto mining area (SW Spain) during a hydrological year. Water Practice and Technology. doi:10.2166/WPT.2011.011.

  • Grande, J. A. (2011). Impact of AMD processes on the public water supply: hydrochemical variations and application of a classification model to a river in the Iberian Pyritic Belt. S.W. Spain. Hydrology Research, 42(6), 472–478.

    Article  Google Scholar 

  • Jiménez, A., Aroba, J., de la Torre, M. L., Andujar, J. M., & Grande, J. A. (2009). Model of behaviour of conductivity versus pH in A.M.D. water bases on fuzzy logia and data mining techniques. Journal of Hydroinformatics, 11(2), 147–153.

    Article  Google Scholar 

  • Leblanc, M., Morales, J. M., Borrego, J., & Elbaz-Poulichet, F. (2000). 4,500-year-old mining pollution in southwestern Spain: long-term implications for modern mining pollution. Economic Geology, 95, 655–662.

    CAS  Google Scholar 

  • Nácete, F., Álex, E., Nieto, J. M., Sáez, R., & Bayona, M. R. (2005). An archaeological approach to regional environmental pollution in the south-western Iberian Peninsula related to Third Millennium BC mining and metallurgy. Journal of Archaeological Science, 32, 1566–1576.

    Article  Google Scholar 

  • Olías, M., Cerón, J. C., Fernández, I., Moral, A., & Rodríguez-Ramírez, A. (2005a). State of contamination of the waters in the Guadiamar valley five years after the Aznalcollar spill. Water, Air, and Soil Pollution, 166, 103–119.

    Article  Google Scholar 

  • Olías, M., Cerón, J. C., Fernández, I., & De la Rosa, J. (2005b). Distribution of rare earth elements in an alluvial aquifer affected by acid mine drainage: the Guadiamar aquifer (SW Spain). Environmental Pollution, 135, 53–64.

    Article  Google Scholar 

  • Olías, M., Cerón, J. C., Moral, F., & Ruiz, F. (2006a). Water quality of the Guadiamar River after the Aznalcóllar spill (SW Spain). Chemosphere, 62, 213–225.

    Article  Google Scholar 

  • Olías, M., Cánovas, C. R., Nieto, J. M., & Sarmiento, A. M. (2006b). Evaluation of the dissolved contaminant load transported by the Tinto and Odiel rivers (south west Spain). Applied Geochemistry, 21, 1733–1749.

    Article  Google Scholar 

  • Olías, M., & Mieto, J. M. (2012). Mining impact on the Tinto and Odiel Rivers throughout History. Revista de la Sociedad Geológica de España, 25(3–4), 177–192.

    Google Scholar 

  • Pinedo-Vara, I. (1963). Piritas de Huelva. Su historia, minería y aprovechamiento. (pp 1003). Madrid: Ed. Summa.

    Google Scholar 

  • Sáez, R., Pascual, E., Toscano, M., & Almodovar, G. (1999). The Iberian type of volcanosedimentary massive sulphide deposits. Mineralium Deposita, 34, 549–570.

    Article  Google Scholar 

  • Sáinz, A., & Ruiz, F. (2006). Influence of the very polluted inputs of the Tinto-Odiel system on the adjacent littoral sediments of southwestern Spain: A statistical approach. Chemosphere, 62, 1612–22.

    Article  Google Scholar 

  • Sáinz, A., Grande, J. A., de la Torre, M. L., & Sánchez-Rodas, D. (2002). Characterisation of sequential leachate discharges of mining waste rock dumps in the Tinto and Odiel rivers. Journal of Environmental Management, 64(4), 345–353.

    Article  Google Scholar 

  • Sáinz, A., Grande, J. A., & de la Torre, M. L. (2003a). Analysis of the impact of local corrective measures on the input of contaminants from the Odiel river to the ria of Huelva (Spain). Water Air Soil Poll., 144, 375–389.

    Article  Google Scholar 

  • Sáinz, A., Grande, J. A., & de la Torre, M. L. (2003b). Odiel river, acid mine drainage and current characterisation by means of univariate analysis. Environment International, 29, 51–59.

    Article  Google Scholar 

  • Sáinz, A., Grande, J. A., & de la Torre, M. L. (2004). Characterization of heavy metal discharge into the ria of Huelva. Environment International, 30, 557–566.

    Article  Google Scholar 

  • Sáinz, A., Grande, J. A., & de la Torre, M. L. (2005). Application of a systemic approach to the study of pollution of the Tinto and Odiel rivers (Spain). Environmental Monitoring and Assesment, 102, 435–445.

    Article  Google Scholar 

  • Van Geen, A., Adkins, J. F., Boyle, E. A., Nelson, C. H., & Palanques, A. (1997). A 120 year record of widespread contamination of the Iberian pyrite belt. Geology, 25, 291–284.

    Article  Google Scholar 

  • Younger, P.L. (1997). The longevity of minewater pollution: a basis for decision-making. Sci. Total Environ., 194/195, 457–466.

    Google Scholar 

Download references

Acknowledgments

The study is a contribution to the CICYT-REN2002-01897/HID, CICYT-TIN2004-006689-C03-03 and DGCICYT-CGL2010-21268-C02-01 projects, which are financed by the Spanish Ministry of Education and Science, and the Andalusian Autonomous Government Excellence Project, code P06-RNM-02167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Grande.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerón, J.C., Grande, J.A., de la Torre, M.L. et al. Impact of AMD Processes on the Water Dams of the Iberian Pyrite Belt: Overall Hydrochemical Characterization (Huelva, SW Spain). Water Air Soil Pollut 224, 1642 (2013). https://doi.org/10.1007/s11270-013-1642-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1642-x

Keywords

Navigation