Skip to main content
Log in

Comparison of Different Air–Water Gas Exchange Models to Determine Gaseous Mercury Evasion from Different European Coastal Lagoons and Estuaries

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Mercury (Hg) evasional fluxes from coastal waters are an important feature of the global Hg cycling; however, they remain poorly characterized due to limitations in datasets and a lack of suitable gas exchange models for such an environment. The objective of this study was to improve this evasional assessment by examining the extent and variability of gaseous Hg exchanges, computed with different gas exchange models, over various European estuaries (Gironde, Scheldt, Rhine) and coastal lagoons (Arcachon, Thau). The major outcomes of this work are the comparison of different models used to compute gaseous Hg exchanges and also the estimation of the variability of Hg fluxes at the air–water interface using a large database composed of 425 measurements acquired over a wide range of coastal ecosystems and seasons. The relative variance, expressed as the relative standard deviation of Hg° fluxes, was used to estimate the variability among models, seasons and sites. The inter-model relative variance (101 %) was the lowest compared to inter-site (182 %) or inter-season (172 %) variability. The highest fluxes were found during spring for the Gironde Estuary (73.7 pmol m−2 h−1), during summer for the Scheldt Estuary, the Arcachon and Thau Lagoons with respectively, 53.3, 55.3 and 23.6 pmol m−2 h−1 and during winter for the Rhine Estuary (50.1 pmol m−2 h−1). They were mainly explained by a combination of greater gaseous Hg production in the water column and wind speed. Overall, the results demonstrate that the sites and seasonal variations will generally overcome the uncertainty arising from the model selection. Generic models are therefore suitable for evasional assessments at the regional scale, while site-specific models should be used for local studies, when accurate mass balances are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abril, G., Commarieu, M.-V., Sottolichio, A., Bretel, P., & Guérin, F. (2009). Turbidity limits gas exchange in a large macrotidal estuary. Estuarine, Coastal and Shelf Science, 83, 342–348.

    Article  CAS  Google Scholar 

  • Amouroux, D., Tessier, E., Pécheyran, C., & Donard, O. F. X. (1998). Sampling and probing volatile metal(loid) species in natural waters by in-situ purge and cryogenic trapping followed by gas chromatography and inductively coupled plasma mass spectrometry (P-CT-GC-ICP/MS). Analytica Chimica Acta, 377, 241–254.

    Article  CAS  Google Scholar 

  • Amyot, M., Gill, G. A., & Morel, F. M. M. (1997). Production and loss of dissolved gaseous mercury in coastal seawater. Environmental Science and Technology, 31, 3606–3611.

    Article  CAS  Google Scholar 

  • Andersson, M. E., Gårdfeldt, K., Wängberg, I., Sprovieri, F., Pirrone, N., & Lindqvist, O. (2007). Seasonal and daily variation of mercury evasion at coastal and off shore sites from the Mediterranean Sea. Marine Chemistry, 104, 214–226.

    Article  CAS  Google Scholar 

  • Andersson, M. E., Gårdfeldt, K., Wängberg, I., & Strömberg, D. (2008). Determination of Henry's law constant for elemental mercury. Chemosphere, 73, 587–592.

    Article  CAS  Google Scholar 

  • Asher, W. E., Karle L. M., Higgins, B. J., Farley P, J., Leifer, I. S., & Monahan, E. C. (1995). The effect of bubble plume size on the parameterization of air/seawater gas transfer velocities. In: B. Jähne. & E. Monahan (Eds.), Air-water gas transfer (pp. 227–238). AEON Verlag: Heidelberg.

  • Baeyens, W., & Leermakers, M. (1998). Elemental mercury concentrations and formation rates in the Scheldt estuary and the North Sea. Marine Chemistry, 60, 257–266.

    Article  CAS  Google Scholar 

  • Bloom, N., & Fitzgerald, W. F. (1988). Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold-vapour atomic fluorescence detection. Analytica Chimica Acta, 208, 151–161.

    Article  CAS  Google Scholar 

  • Borges, A. V., Delille, B., & Frankignoulle, M. (2005). Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. Geophysical Research Letters, 32, L14601.

  • Borges, A. V., Delille, B., Schiettecatte, L.-S., Gazeau, F., Abril, G., & Frankignoulle, M. (2004a). Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnology and Oceanography, 49, 1630–1641.

    Article  CAS  Google Scholar 

  • Borges, A. V., Vanderborght, J.-P., Schiettecatte, L.-S., Gazeau, F., Ferrón-Smith, S., Delille, B., & Frankignoulle, M. (2004b). Variability of the gas transfer velocity of CO2 in a macrotidal estuary (The Scheldt). Estuaries, 27, 593–603.

    Article  CAS  Google Scholar 

  • Bouchet, S., 2009. Etude de la spéciation biogéochimique du mercure aux interfaces des écosystèmes tidaux côtiers, Université de Pau et des Pays de l'Adour, Pau, 261 pp

  • Bouchet, S., Tessier, E., Monperrus, M., Bridou, R., Clavier, J., Thouzeau, G., & Amouroux, D. (2011). Measurements of gaseous mercury exchanges at the sediment–water, water–atmosphere and sediment–atmosphere interfaces of a tidal environment (Arcachon Bay, France). Journal of Environmental Monitoring, 13, 1351–1359.

    Article  CAS  Google Scholar 

  • Canton, M., Anschutz, P., Coynel, A., Polsenaere, P., Auby, I., & Poirier, D. (2012). Nutrient export to an Eastern Atlantic coastal zone: First modeling and nitrogen mass balance. Biogeochemistry, 107, 361–377.

    Article  CAS  Google Scholar 

  • Carini, S., Weston, N., Hopkinson, C., Tucker, J., Giblin, A., & Vallino, J. (1996). Gas exchange rates in the Parker River Estuary. Massachusetts. Biol Bull., 191, 333–334.

    Google Scholar 

  • Carpi, A., & Lindberg, S. E. (1997). Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge. Environmental Science and Technology, 31, 2085–2091.

    Article  CAS  Google Scholar 

  • Castelle, S., Schäfer, J., Blanc, G., Dabrin, A., Lanceleur, L., & Masson, M. (2009). Gaseous mercury at the air–water interface of a highly turbid estuary (Gironde Estuary, France). Marine Chemistry, 117, 42–51.

    Article  CAS  Google Scholar 

  • Ci, Z. J., Zhang, X. S., Wang, Z. W., Niu, Z. C., Diao, X. Y., & Wang, S. W. (2011). Distribution and air–sea exchange of mercury (Hg) in the Yellow Sea. Atmospheric Chemistry and Physics., 11, 2881–2892.

    Article  CAS  Google Scholar 

  • Clark, J. F., Schlosser, P., Simpson, H. J., Stute, M., Wanninkhof, R., & Ho, D. T. (1995). Relationship between gas transfer velocities and wind speeds in the tidal Hudson River determined by the dual tracer technique. In Jähne & E. Monahan (Eds.), Air-Water Gas Transfer (pp. 175–800). Hanau: Aeon Verlag.

    Google Scholar 

  • Cole, J. J., & Caraco, N. F. (1998). Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnology and Oceanography, 43, 647–656.

    Article  CAS  Google Scholar 

  • Conaway, C. H., Squire, S., Mason, R. P., & Flegal, A. R. (2003). Mercury speciation in the San Francisco Bay estuary. Marine Chemistry, 80, 199–225.

    Article  CAS  Google Scholar 

  • Cossa, D., Heimbürger, L.-E., Lannuzel, D., Rintoul, S. R., Butler, E. C. V., Bowie, A. R., Averty, B., Watson, R. J., & Remenyi, T. (2011). Mercury in the Southern Ocean. Geochimica et Cosmochimica Acta, 75, 4037–4052.

    Article  CAS  Google Scholar 

  • Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menard, P., Hicks, B. B., Miller, J. M., Prospero, J. M., Arimoto, R., Church, T. M., Ellis, W., Galloway, J. N., Hansen, L., Jickells, T. D., Knap, A. H., Reinhardt, K. H., Schneider, B., Soudine, A., Tokos, J. J., Tsunogai, S., Wollast, R., & Zhou, M. (1991). The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles, 5, 193–259.

    Article  CAS  Google Scholar 

  • Feng, X., Sommar, J., Gårdfeldt, K., & Lindqvist, O. (2002). Exchange flux of total gaseous mercury between air and natural water surfaces in summer season. Science in China Series D: Earth Sciences., 45, 211–220.

    Article  CAS  Google Scholar 

  • Feng, X., Yan, H., Wang, S., Qiu, G., Tang, S., Shang, L., Dai, Q., & Hou, Y. (2004). Seasonal variation of gaseous mercury exchange rate between air and water surface over Baihua reservoir, Guizhou. China. Atmospheric Environment., 38, 4721–4732.

    Article  CAS  Google Scholar 

  • Ferrara, R., Maserti, B. E., Andersson, M., Edner, H., Ragnarson, P., & Svanberg, S. (1997). Mercury degassing rate from mineralized areas in the Mediterranean Basin. Water, Air, & Soil Pollution, 93, 59–66.

    CAS  Google Scholar 

  • Ferrara, R., & Mazzolai, B. (1998). A dynamic flux chamber to measure mercury emission from aquatic systems. The Science of the Total Environment, 215, 51–57.

    Article  CAS  Google Scholar 

  • Fitzgerald, W., Mason, R., & Vandal, G. (1991). Atmospheric cycling and air–water exchange of mercury over mid-continental lacustrine regions. Water, Air, & Soil Pollution, 56, 745–767.

    Article  CAS  Google Scholar 

  • Fitzgerald, W. F., Lamborg, C. H., & Hammerschmidt, C. R. (2007). Marine biogeochemical cycling of mercury. Chemical Reviews, 107, 641–662.

    Article  CAS  Google Scholar 

  • Fitzgerald, W. F., Mason, R. P., Vandal, G. M., & Dulac, F. (1994). Air–water cycling of mercury in lakes. In C. J. Watras & J. W. Huckabee (Eds.), Mercury pollution—integration and synthesis (pp. 203–220). Michigan: Lewis Publishers.

    Google Scholar 

  • Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E., & Théate, J.-M. (1998). Carbon dioxide emission from European estuaries. Science, 282, 434–436.

    Article  CAS  Google Scholar 

  • Gårdfeldt, K., Feng, X., Sommar, J., & Lindqvist, O. (2001). Total gaseous mercury exchange between air and water at river and sea surfaces in Swedish coastal regions. Atmospheric Environment, 35, 3027–3038.

    Article  Google Scholar 

  • Gårdfeldt, K., Sommar, J., Ferrara, R., Ceccarini, C., Lanzillotta, E., Munthe, J., Wängberg, I., Lindqvist, O., Pirrone, N., Sprovieri, F., Pesenti, E., & Strömberg, D. (2003). Evasion of mercury from coastal and open waters of the Atlantic Ocean and the Mediterranean Sea. Atmospheric Environment, 37, 73–84.

    Article  Google Scholar 

  • Hammerschmidt, C. R., & Bowman, K. L. (2012). Vertical methylmercury distribution in the subtropical North Pacific Ocean. Marine Chemistry, 132–133, 77–82.

    Article  Google Scholar 

  • Hanson, P. J., Lindberg, S. E., Tabberer, T. A., Owens, J. G., & Kim, K. H. (1995). Foliar exchange of mercury vapor: Evidence for a compensation point. Water, Air, & Soil Pollution, 80, 373–382.

    Article  CAS  Google Scholar 

  • Hornbuckle, K. C., Jeremiason, J. D., Sweet, C. W. & Eisenreich, S. J. (1994). Seasonal variations in air-water exchange of polychlorinated biphenyls in lake superior. Environmental Science & Technology, 28, 1491–1501.

    Google Scholar 

  • Jähne, B., & HauBecker. (1998). Air–water gas exchange. Annual Review of Fluid Mechanics, 30, 443–468.

    Article  Google Scholar 

  • Johnson, D. W., & Lindberg, S. E. (1995). The biogeochemical cycling of Hg in forests: Alternative methods for quantifying total deposition and soil emission. Water, Air, & Soil Pollution, 80, 1069–1077.

    Article  CAS  Google Scholar 

  • Jonkers, N., Laane, R. W. P. M., de Graaf, C., & de Voogt, P. (2005). Fate modeling of nonylphenol ethoxylates and their metabolites in the Dutch Scheldt and Rhine estuaries: Validation with new field data. Estuarine, Coastal and Shelf Science, 62, 141–160.

    Article  CAS  Google Scholar 

  • Kim, K.-H., Lindberg, S. E., & Meyers, T. P. (1995). Micrometeorological measurements of mercury vapor fluxes over background forest soils in eastern Tennessee. Atmospheric Environment, 29, 267–282.

    Article  CAS  Google Scholar 

  • Kremer, J., Reischauer, A., & D’Avanzo, C. (2003). Estuary-specific variation in the air-water gas exchange coefficient for oxygen. Estuaries and Coasts., 26, 829–836.

    Article  Google Scholar 

  • Kuss, J., Holzmann, J. R., & Ludwig, R. (2009). An elemental mercury diffusion coefficient for natural waters determined by molecular dynamics simulation. Environmental Science and Technology, 43, 3183–3186.

    Article  CAS  Google Scholar 

  • Lamborg, C. H., Fitzgerald, W. F., O’Donnell, J., & Torgersen, T. (2002). A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochimica et Cosmochimica Acta, 66, 1105–1118.

    Article  CAS  Google Scholar 

  • Lamborg, C. H., Rolfhus, K. R., Fitzgerald, W. F., & Kim, G. (1999). The atmospheric cycling and air-sea exchange of mercury species in the South and equatorial Atlantic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 46, 957–977.

    Article  CAS  Google Scholar 

  • Lindberg, S. E., Kim, K.-H., Meyers, T. P., & Owens, J. G. (1995). Micrometeorological gradient approach for quantifying air/surface exchange of mercury vapor: tests over contaminated soils. Environmental Science and Technology, 29, 126–135.

    Article  CAS  Google Scholar 

  • Lindqvist, O. (1986). Fluxes of mercury in the Swedish environment: Contributions from waste incineration. Waste Management & Research, 4, 35–44.

    Article  CAS  Google Scholar 

  • Lindqvist, O., Johansson, K., Bringmark, L., Timm, B., Aastrup, M., Andersson, A., Hovsenius, G., Håkanson, L., Iverfeldt, Å. and Meili, M., 1991. Mercury in the Swedish environment—recent research on causes, consequences and corrective methods. Water, Air, & Soil Pollution. 55, xi-261.

  • Liss, P., Slinn, W. G., & Liss, P. (1983). Gas transfer: Experiments and geochemical implications, air–sea exchange of gases and particles. NATO ASI Series (pp. 241–298). Netherlands: Springer.

    Book  Google Scholar 

  • Liss, P. S., & Merlivat, L. (1986). In P. Buat-Ménard & D. Reidel (Eds.), The role of air-sea exchange in geochemical cycling (pp. 113–129). France: Bombannes.

    Chapter  Google Scholar 

  • Marino, R., & Howarth, R. W. (1993). Atmospheric oxygen exchange in the Hudson River: Dome measurements and comparison with other natural waters. Estuaries, 16, 433–445.

    Article  CAS  Google Scholar 

  • Mason, R., & Fitzgerald, W. (1991). Mercury speciation in open ocean waters. Water, Air, & Soil Pollution, 56, 779–789.

    Article  CAS  Google Scholar 

  • Mason, R. P., Choi, A. L., Fitzgerald, W. F., Hammerschmidt, C. R., Lamborg, C. H., Soerensen, A. L., & Sunderland, E. M. (2012). Mercury biogeochemical cycling in the ocean and policy implications. Environmental Research, 119, 101–117.

    Article  CAS  Google Scholar 

  • Mason, R. P., Fitzgerald, W. F., & Morel, F. M. M. (1994). The biogeochemical cycling of elemental mercury: Anthropogenic influences. Geochimica et Cosmochimica Acta, 58, 3191–3198.

    Article  CAS  Google Scholar 

  • Mason, R. P., Fitzgerald, W. F., Hurley, J., Hanson, A. K. J., Donaghay, P. L. & Sieburth, J. M. (1993). Mercury biogeochemical cycling in a stratified estuary. Limnology and Oceanography, 38, 1227–1241.

    Google Scholar 

  • Mason, R. P., Lawson, N. M., Lawrence, A. L., Leaner, J. J., Lee, J. G., & Sheu, G.-R. (1999). Mercury in the Chesapeake Bay. Marine Chemistry, 65, 77–96

    Article  CAS  Google Scholar 

  • Mason, R. P., Lawson, N. M., & Sheu, G. R. (2001). Mercury in the Atlantic Ocean: Factors controlling air–sea exchange of mercury and its distribution in the upper waters. Deep Sea Research Part II: Topical Studies in Oceanography, 48, 2829–2853.

    Article  CAS  Google Scholar 

  • Meire, P., Ysebaert, T., Damme, S. V., Bergh, E. V. D., Maris, T., & Struyf, E. (2005). The Scheldt estuary: A description of a changing ecosystem. Hydrobiologia, 540, 1–11.

    Article  CAS  Google Scholar 

  • Monperrus, M., Tessier, E., Veschambre, S., Amouroux, D., & Donard, O. (2005). Simultaneous speciation of mercury and butyltin compounds in natural waters and snow by propylation and species-specific isotope dilution mass spectrometry analysis. Analytical and Bioanalytical Chemistry, 381, 854–862.

    Article  CAS  Google Scholar 

  • Narukawa, M., Sakata, M., Marumoto, K., & Asakura, K. (2006). Air–sea exchange of mercury in Tokyo Bay. Journal of Oceanography, 62, 249–257.

    Article  CAS  Google Scholar 

  • Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J., & Upstill-Goddard, R. C. (2000). In situ evaluation of air–sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14, 373–387.

    Article  CAS  Google Scholar 

  • Plus, M., Jeunesse, I. L., Bouraoui, F., Zaldívar, J.-M., Chapelle, A., & Lazure, P. (2006). Modelling water discharges and nitrogen inputs into a Mediterranean lagoon: Impact on the primary production. Ecological Modelling, 193, 69–89.

    Article  Google Scholar 

  • Poissant, L., Amyot, M., Pilote, M., & Lean, D. (2000). Mercury water–air exchange over the Upper St Lawrence River and Lake Ontario. Environmental Science & Technology, 34, 3069–3078.

    Article  CAS  Google Scholar 

  • Poissant, L., & Casimir, A. (1998). Water–air and soil–air exchange rate of total gaseous mercury measured at background sites. Atmospheric Environment, 32, 883–893.

    Article  CAS  Google Scholar 

  • Raymond, P., & Cole, J. (2001). Gas exchange in rivers and estuaries: Choosing a gas transfer velocity. Estuaries and Coasts, 24, 312–317.

    Article  CAS  Google Scholar 

  • Rolfhus, K. R., & Fitzgerald, W. F. (2001). The evasion and spatial/temporal distribution of mercury species in Long Island Sound, CT-NY. Geochimica et Cosmochimica Acta, 65, 407–418.

    Article  CAS  Google Scholar 

  • Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury—an overview. Atmospheric Environment, 32, 809–822.

    Article  CAS  Google Scholar 

  • Schroeder, W. H., Munthe, J., & Lindqvist, O. (1989). Cycling of mercury between water, air, and soil compartments of the environment. Water, Air, & Soil Pollution, 48, 337–347.

    Article  CAS  Google Scholar 

  • Tessier, E., Amouroux, D. and Donard Olivier, F. X. (2002). Biogenic volatilization of trace elements from European estuaries, Biogeochemistry of Environmentally Important Trace Elements. ACS Symposium Series. American Chemical Society, pp. 151–165.

  • Tseng, C. M., de Diego, A., Pinaly, H., Amouroux, D., & Donard, F. X. O. (1998). Cryofocusing coupled to atomic absorption spectrometry for rapid and simple mercury speciation in environmental matrices. Journal of Analytical Atomic Spectrometry, 13, 755–764.

    Article  CAS  Google Scholar 

  • Tseng, C. M., Lamborg, C., Fitzgerald, W. F., & Engstrom, D. R. (2004). Cycling of dissolved elemental mercury in Arctic Alaskan lakes. Geochimica et Cosmochimica Acta, 68, 1173–1184.

    Article  CAS  Google Scholar 

  • Vandal, G., Mason, R., & Fitzgerald, W. (1991). Cycling of volatile mercury in temperate lakes. Water, Air, & Soil Pollution, 56, 791–803.

    Article  CAS  Google Scholar 

  • Wängberg, I., Schmolke, S., Schager, P., Munthe, J., Ebinghaus, R., & Iverfeldt, Å. (2001). Estimates of air–sea exchange of mercury in the Baltic Sea. Atmospheric Environment, 35, 5477–5484.

    Article  Google Scholar 

  • Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97, 7373–7382.

    Article  Google Scholar 

  • Xiao, Z. F., Munthe, J., Schroeder, W. H., & Lindqvist, O. (1991). Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden. Tellus B., 43, 267–279.

    Article  Google Scholar 

  • Zappa, C., Raymond, P., Terray, E., & McGillis, W. (2003). Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries and Coasts, 26, 1401–1415.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the European Community, the Aquitaine Region, the Agence Nationale de la Recherche and the Centre National de la Recherche Scientifique (C.N.R.S.) for their financial support of the different sampling campaigns and analyses. The authors also thank Carl H. Lamborg from the Woods Hole Oceanographic Institution (WHOI) for his helpful comments and English reviewing. A. SHARIF thanks the Libyan Ministry of Higher Education for his doctoral fellowship. This work is a contribution to the Réseau de Recherche Littoral Aquitaine (RRLA/CRA) and the Programme National Environnment Côtier (PNEC/EC2CO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Amouroux.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharif, A., Tessier, E., Bouchet, S. et al. Comparison of Different Air–Water Gas Exchange Models to Determine Gaseous Mercury Evasion from Different European Coastal Lagoons and Estuaries. Water Air Soil Pollut 224, 1606 (2013). https://doi.org/10.1007/s11270-013-1606-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1606-1

Keywords

Navigation