Skip to main content
Log in

Electrochemical Reduction Prior to Electro-Fenton Oxidation of Azo Dyes: Impact of the Pretreatment on Biodegradability

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this work was to study the degradation of three azo dyes, Orange II, Methyl red and Biebrich Scarlet by electro-Fenton and the effect of the electrochemical pretreatment on the biodegradability of the solutions. The electrochemical pretreatment showed that an electrochemical reduction on the carbon felt electrode was mainly responsible for the decolorization of the azo dyes. Indeed, the electrochemical behaviour of the azo dyes highlighted their electroactivity; electrolysis with and without ferric ions led to the same decolorization yield, namely 99 % at 15 min for Methyl red, and stable chemical oxygen demand (COD) values were recorded during decolorization. In a second step and owing to the absence of by-product electroactivity in reduction, the formation of hydroxyl radicals by the Fenton reaction led to the oxidation of by-products from the electrochemical reduction. It was illustrated by the decrease recorded for the COD values. The results also showed that the azo bond cleavage occurring during the electrochemical reduction was not sufficient to significantly reduce recalcitrance, as shown from biological oxygen demand (BOD)5/COD ratio examination below the limit of biodegradability (0.4). Contrarily, a positive trend was recorded for Orange II during the electro-Fenton reaction, with a BOD5/COD ratio of 0.81 after 28 h of pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arslan, I., Bacioglou, I. A., Tuhkanen, T., & Bahnemann, D. (2000). H2O2/UV-C and Fe2+/H2O2/UV-C versus TiO2/UV-A treatment for reactive dye wastewater. Journal of Environmental Engineering, 126, 903–911.

    Article  CAS  Google Scholar 

  • Auriol, M., Filali-Meknassi, Y., Tyagi, R. D., & Adams, C. D. (2006). Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochemistry, 41, 525–539.

    Article  CAS  Google Scholar 

  • Borras, N., Arias, C., Oliver, R., & Brillas, E. (2011). Mineralization of desmetryne by electrochemical advanced oxidation processes using a boron-doped diamond anode and an oxygen-diffusion cathode. Chemosphere, 85, 1167–1175.

    Article  CAS  Google Scholar 

  • Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chemical Reviews, 109, 6570–6631.

    Article  CAS  Google Scholar 

  • Brown, M. A., & De Vito, S. C. (1993). Predicting azo dye toxicity. Critical Reviews in Environmental Science and Technology, 23, 249–324.

    Article  CAS  Google Scholar 

  • Buxton, G. U., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constant for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (HO°/O°). Journal of Physical Chemistry, 17(2), 513–759.

    CAS  Google Scholar 

  • Chaudhuri, S. K., & Sur, B. (2000). Oxidative decolorization of reactive dye solution using fly ash as catalyst. Journal of Environmental Engineering, 126, 583–594.

    Article  CAS  Google Scholar 

  • Chebli, D., Fourcade, F., Brosillon, S., Nacef, S., & Amrane, A. (2010). Supported photocatalysis as a pre-treatment prior to biological degradation for the removal of some dyes from aqueous solutions; Acide Red 183, Biebrich Scarlet, Methyl Red Sodium Salt, Orange II. Journal of Chemical Technology and Biotechnology, 85(4), 555–563.

    CAS  Google Scholar 

  • Cheng, X. H., & Guo, W. (2007). The oxidation kinetics of reduction intermediate product of methyl red with hydrogen peroxide. Dyes and Pigments, 72, 372–377.

    Article  CAS  Google Scholar 

  • Chiron, S., Fernadez-Alba, A., Rodriguez, A., & Garcia-Calvo, E. (2000). Pesticide chemical oxidation: state of the art. Water Research, 34(2), 366–377.

    Article  CAS  Google Scholar 

  • Comninellis, C., Kapalka, A., Malato, M., Parsons, S. A., Poulios, I., & Mantzavinos, D. (2008). Perspective advanced oxidation processes for water treatment: advances and trends for R&D. Journal of Chemical Technology and Biotechnology, 83, 769–776.

    Article  CAS  Google Scholar 

  • Cruz-Gonzales, K., Torres-Lopez, O., Garcia-Leon, A. M., Brillas, E., Hernandez-Ramirez, A., & Peralta-Hernandez, J. M. (2012). Optimization of electro-Fenton/BDD process for decolorization of a model azo dye wastewater by means of response surface methodology. Desalination, 286, 63–68.

    Article  Google Scholar 

  • Daneshvar, N., Aber, S., Vatanpour, V., & Rasoulifard, M. H. (2008). Electro-Fenton treatment of dye solution containing Orange II: influence of operational parameters. Journal of Electroanalytical Chemistry, 615(2), 165–174.

    Article  CAS  Google Scholar 

  • De La Rochebrochard D'Auzay, S., Brosillon, S., Fourcade, F., & Amrane, A. (2007). Integrated process for degradation of amitrole in wastewaters: photocatalysis/biodegradation. International Journal of Chemical Reactor Engineering, 5, A51.

    Google Scholar 

  • Dominguez, J. R., Beltran, J., & Rodriguez, O. (2005). Vis and UV photocatalytic detoxification methods (using TiO2, TiO2/H2O2, TiO2/S2O8 2−, O3, H2O2, S2O8 2−, Fe3+/H2O2, and Fe3+/H2O2/C2O4 2−) for dyes treatment. Catalysis Today, 101, 389–395.

    Article  CAS  Google Scholar 

  • Forgacs, E., Cserhati, T., & Oros, G. (2004). Removal of synthetic dye from wastewater: a review. Environment International, 30, 953–971.

    Article  CAS  Google Scholar 

  • Gallard, H., De Laat, J., & Legube, B. (1998). Influence du pH sur la vitesse d'oxydation de composés organiques par Fe(II)/H2O2. Mécanismes réactionnel et modélisation. New Journal of Chemistry, 2(3), 263–268.

    Article  Google Scholar 

  • Guivarch, E. (2004). Traitement des polluants organiques en milieux aqueux par procédé électrochimique d'oxydation avancée "Electro-Fenton". Application à la minéralisation des colorants synthétiques: PhD thesis, Université Marne la Vallée, France.

  • Guivarch, E., Oturan, N., & Oturan, M. A. (2003). Removal of organophosphorus pesticides from water by electrogenerated Fenton's reagent. Environmental Chemistry Letters, 1, 165–168.

    Article  CAS  Google Scholar 

  • Guivarch, E., Trevin, S., Lahitte, C., & Oturan, M. A. (2003). Degradation of azo dyes in water by electro-Fenton process. Environmental Chemistry Letters, 1, 38–44.

    Article  CAS  Google Scholar 

  • Hachem, C., Bocquillon, F., Zahraa, O., & Bouchy, M. (2001). Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes and Pigments, 49, 117–125.

    Article  CAS  Google Scholar 

  • Hammami, S., Bellakhal, N., Oturan, N., Oturan, M. A., & Dachraoui, M. (2008). Degradation of Acid Orange 7 by electrochemically generated OH radicals in acidic aqueous medium using a boron-doped diamond or platinum anode: a mechanistic study. Chemosphere, 73, 678–684.

    Article  CAS  Google Scholar 

  • Ledakowicz, S., Solecka, M., & Zylla, R. (2001). Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. Journal of Biotechnology, 89, 175–184.

    Article  CAS  Google Scholar 

  • Lund, H., & Hammerich, O. (2001). Organic electrochemistry (4th ed.). New York: Marcel Decker, INC.

    Google Scholar 

  • Oller, I., Malato, S., & Sanchez-Perez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409, 4141–4166.

    Article  CAS  Google Scholar 

  • Oppenländer, T. (2003). Photochemical purification of water and air advanced oxidation processes (AOPs): Principles, reactions mechanisms, reactor concepts. London: Wiley-VCH.

    Google Scholar 

  • Oturan, M. A., & Pinson, J. (1995). Hydroxylation by electrochemically generated OH radicals. Mono- and polyhydroxylation of benzoic acid: products and isomer's distribution. Journal of Physical Chemistry, 99, 13948–13954.

    Article  CAS  Google Scholar 

  • Ozcan, A., Sahin, Y., Koparal, A. S., & Oturan, M. A. (2008). Carbon sponge as a new cathode material for the electro-Fenton process: comparison with carbon felt cathode and application to degradation of synthetic dye Basic Blue 3 in aqueous medium. Journal of Electroanalytical Chemistry, 616, 71–78.

    Article  CAS  Google Scholar 

  • Ozcan, A., Oturan, M. A., Oturan, N., & Sahin, Y. (2009). Removal of Acid Orange 7 from water by electrochemically generated Fenton's reagent. Journal of Hazardous Materials, 163(2–3), 1213–1220.

    Article  Google Scholar 

  • Panizza, M., & Cerisola, G. (2009). Electro-Fenton degradation of synthetic dyes. Water Research, 43, 339–344.

    Article  CAS  Google Scholar 

  • Poyatos, J. M., Munio, M. M., Almecija, M. C., Torres, J. C., Hontorio, E., & Osorio, F. (2010). Advanced oxidation processes for wastewater treatment: state of the art. Water, Air, and Soil Pollution, 205(1–4), 187–204.

    Article  CAS  Google Scholar 

  • Qiang, Z., Chang, J. H., & Huang, C. P. (2002). Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Research, 36, 85–94.

    Article  CAS  Google Scholar 

  • Qiang, Z., Chang, J. H., & Huang, C. P. (2003). Electrochemical generation of Fe2+ in Fenton oxidation processes. Water Research, 37(6), 1308–1319.

    Article  CAS  Google Scholar 

  • Ramirez, H. J., Costa, C. A., & Madeira, L. M. (2005). Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton's reagent. Catalysis Today, 107–108, 68–76.

    Article  Google Scholar 

  • Ramirez, J. H., Duarte, F. M., Martins, F. G., Costa, C. A., & Madeira, L. M. (2009). Modelling of the synthetic dye Orange II degradation using Fenton's reagent: from batch to continuous reactor operation. Chemical Engineering Journal, 148, 394–404.

    Article  CAS  Google Scholar 

  • Robinson, T., McMullan, G., Marchand, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255.

    Article  CAS  Google Scholar 

  • Rosales, E., Pazos, M., Longo, M. A., & Sanroman, M. A. (2009). Electro-Fenton decoloration of dyes in continuous reactor: a promising technology in colored wastewater treatment. Chemical Engineering Journal, 155(1–2), 62–67.

    Article  CAS  Google Scholar 

  • Scott, J. P., & Ollis, D. F. (1995). Integration of chemical and biological processes for water treatment: review and recommendations. Environmental Progress, 14, 88–103.

    Article  CAS  Google Scholar 

  • Scott, J. P., & Ollis, D. F. (1997). Integration of chemical and biological oxidation processes for water treatment: II. Recent illustrations and experiences. The Journal of Advanced Oxidation Technologies, 2, 374–381.

    CAS  Google Scholar 

  • Sires, I., Guivarch, E., Oturan, N., & Oturan, M. A. (2008). Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton's reagent at carbon-felt electrode. Chemosphere, 72, 592–600.

    Article  CAS  Google Scholar 

  • Stock, N. L., Peller, J., Vinodgopal, K., & Kamat, P. V. (2000). Combinative sonolysis and photocatalysis for textile dye degradation. Environmental Science and Technology, 34, 1747–1750.

    Article  CAS  Google Scholar 

  • Sun, S. P., Li, C. J., Sun, J. H., Shib, S. H., Fand, M. H., & Zhoua, Q. (2009). Decoloration of an azo dye Orange G in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study. Journal of Hazardous Materials, 161, 1052–1057.

    Article  CAS  Google Scholar 

  • Tantak, N. P., & Chaudhari, S. (2006). Degradation of azo dyes by sequential Fenton's oxidation and aerobic biological treatment. Journal of Hazardous Materials, 136(6), 698–705.

    Article  CAS  Google Scholar 

  • Wang, A., Qu, J., Ru, J., Liu, H., & Ge, J. (2005). Mineralization of an azo-dye Acid Red 14 by electro-Fenton's reagent using an activated carbon fiber cathode. Dyes and Pigments, 65, 227–233.

    Article  CAS  Google Scholar 

  • Xu, G., O'Dea, J. J., & Osteryoung, J. G. (1996). Surface reduction study of monoazo dyes by adsorptive square wave voltammetry. Dyes and Pigments, 30(3), 201–223.

    Article  CAS  Google Scholar 

  • Zhou, M., Yu, Q., Lei, L., & Barton, G. (2007). Electro-Fenton method for the removal of Methyl Red in an efficient electrochemical system. Separation and Purification Technology, 57(2), 380–387.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fourcade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fourcade, F., Delawarde, M., Guihard, L. et al. Electrochemical Reduction Prior to Electro-Fenton Oxidation of Azo Dyes: Impact of the Pretreatment on Biodegradability. Water Air Soil Pollut 224, 1385 (2013). https://doi.org/10.1007/s11270-012-1385-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1385-0

Keywords

Navigation