Skip to main content
Log in

Arsenic Uptake from Arsenic-Contaminated Water Using Hyperaccumulator Pteris vittata L.: Effect of Chloride, Bicarbonate, and Arsenic Species

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

High As groundwater normally contained high concentrations of Cl and HCO 3 . This study examined the effects of Cl, HCO 3 , and As species on As uptake by hyperaccumulator Pteris vittata. Plants were exposed hydroponically to 5.0 mg/L As(III) or As(V) in the presence of 0, 0.5, 1, 2, 5, 10, and 20 mM of Cl or HCO 3 for 10 days. Addition of high Cl concentrations (>10 mM) slightly inhibited P. vittata growth (biomass), while generally had no significant effect on plant As uptake. High solution pH resulted in reduced plant growth and As uptake, which attributed to the inhibitory effects in HCO 3 treatments with the high pH of the high HCO 3 concentration. It was speculated that addition of HCO 3 (<20 mM) would have no significant effect on plant growth and As uptake. The inhibitory effect of HCO 3 on As translocation was less apparent in the As(III) solutions than the As(V) solutions. For the high As groundwater with As(III) as the predominant species, high pH, instead of high concentrations HCO 3 and Cl, was expected to inhibit As uptake. The results suggested that optimum plant growth and maximum As hyperaccumulation could be achieved by adjusting solution pH in the growth media (around 7.2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Mahbub Alam, S. M., Hossain Bhuyian, M. A., et al. (2004). Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Applied Geochemistry, 19, 181–200.

    Article  CAS  Google Scholar 

  • Bagga, D. K., & Peterson, S. (2001). Phytoremediation of arsenic contaminated soil as affected by the chelating agent CDTA and different levels of soil pH. Remediation Journal, 12, 77–85.

    Article  Google Scholar 

  • Bhattacharya, P., Claesso, M., Bundschuh, J., Sracek, O., Fagerberg, J., Jacks, G., et al. (2006). Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Science of the Total Environment, 358, 97–120.

    Article  CAS  Google Scholar 

  • Chen, T. B., Wei, C. Y., Huang, Z. C., Huang, Q. F., Lu, Q. G., & Fan, Z. L. (2002). Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Chinese Science Bulletin, 47(11), 902–905.

    Article  CAS  Google Scholar 

  • Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110, 715–719.

    CAS  Google Scholar 

  • Del Razo, L. M., Arellano, M. A., & Cebrián, M. E. (1990). The oxidation states of arsenic in well-water from a chronic arsenicism area of northern Mexico. Environmental Pollution, 64, 143–153.

    Article  Google Scholar 

  • Elless, M. P., Poynton, C. Y., Willms, C. A., Doyle, M. P., Lopez, A. C., Sokkary, D. A., et al. (2005). Pilot-scale demonstration of phytofiltration for treatment of arsenic in New Mexico drinking water. Water Research, 39, 3863–3872.

    Article  CAS  Google Scholar 

  • European Commission. (1998). Directive related with drinking water quality intended for human consumption, Brussels, Belgium, 98/83/EC.

  • Fayiga, A. O., Ma, L. Q., & Rathinasabapathi, B. (2008). Effects of nutrients on arsenic accumulation by arsenic hyperaccumulator Pteris vittata L. Environmental and Experimental Botany, 62, 231–237.

    Article  CAS  Google Scholar 

  • Feng, R., Wei, C., Tu, S., & Sun, X. (2009). Interactive effects of selenium and arsenic on their uptake by Pteris vittata L. under hydroponic conditions. Environmental and Experimental Botany, 65, 363–368.

    Article  CAS  Google Scholar 

  • Francesconi, K., Visoottiviseth, P., Sridockhan, W., & Goessler, W. (2002). Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator. Science of the Total Environment, 284, 27–35.

    Article  CAS  Google Scholar 

  • Guo, H. M., & Wang, Y. (2005). Geochemical characteristics of shallow groundwater in the Datong basin, northwestern China. Journal of Geochemical Exploration, 87(3), 109–120.

    Article  CAS  Google Scholar 

  • Guo, H. M., Yang, S. Z., Tang, X. H., Li, Y., & Shen, Z. L. (2008). Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia. Science of the Total Environment, 393, 131–144.

    Article  CAS  Google Scholar 

  • Guo, H. M., Li, Y., & Zhao, K. (2010). Arsenate removal from aqueous solution using synthetic siderite. Journal of Hazardous Material, 176, 174–180.

    Article  CAS  Google Scholar 

  • Guo, H. M., Zhang, B., & Zhang, Y. (2011). Control of organic colloids on arsenic partition and transport in high arsenic groundwaters in the Hetao basin, Inner Mongolia. Applied Geochemistry, 26, 360–370.

    Article  CAS  Google Scholar 

  • Hoagland, D. R., & Arnon, D. I. (1938). The water culture method for growing plants without soil. California Agricultural Experiment Station Circular, 3, 346–347.

    Google Scholar 

  • Huang, J. W., Poynton, C. Y., Kochian, L. V., & Elless, M. P. (2004). Phytofiltration of arsenic from drinking water using arsenic-hyperaccumulating ferns. Environmental Science and Technology, 38, 3412–3417.

    Article  CAS  Google Scholar 

  • Huang, Z. C., An, Z. Z., Chen, T. B., Lei, M., Xiao, X. Y., & Liao, X. Y. (2007). Arsenic uptake and transport of Pteris vittata L. as influenced by phosphate and inorganic arsenic species under sand culture. Journal of Environmental Science, 19, 714–718.

    Article  CAS  Google Scholar 

  • Komar, K. (1999). Phytoremediation of arsenic contaminated soil: plant identification and uptake enhancement. Master thesis, University of Florida.

  • Liu, X., Yang, Y., Li, W., Li, C., Duan, D., & Tadano, T. (2004). Interactive effects of sodium chloride and nitrogen on growth and ion accumulation of a halophyte. Communication in Soil Science and Plant Analysis, 35, 2111–2123.

    Article  CAS  Google Scholar 

  • Lombi, E., Zhao, F. J., Fuhrmann, M., Ma, L. Q., & McGrath, S. P. (2002). Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytology, 156, 195–203.

    Article  CAS  Google Scholar 

  • Lou, L. Q., Ye, Z. H., & Wong, M. H. (2009). A comparison of arsenic tolerance, uptake and accumulation between arsenic hyperaccumulator, Pteris vittata L. and non-accumulator, P. semipinnata L.—a hydroponic study. Journal of Hazardous Materials, 171, 436–442.

    Article  CAS  Google Scholar 

  • Ma, L. Q., Komar, K. M., Tu, C., Zhang, W. H., & Cai, Y. (2001). A fern that hyperaccumulates arsenic: a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature, 409, 579.

    Article  CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants. UK: Academic.

    Google Scholar 

  • McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14, 277–282.

    Article  CAS  Google Scholar 

  • Meharg, A. A. (2003). Variation in arsenic accumulation–hyperaccumulation in ferns and their allies. New Phytology, 157, 25–31.

    Article  CAS  Google Scholar 

  • Natarajan, S., Stamps, R. H., Saha, U. K., & Ma, L. Q. (2009). Effects of N and P levels, and frond-harvesting on absorption, translocation and accumulation of arsenic by Chinese brake fern (Pteris vittata L.). International Journal of Phytoremediation, 11, 313–328.

    Article  CAS  Google Scholar 

  • Natarajan, S., Stamps, R. H., Ma, L. Q., Saha, U. K., Hernandez, D., Cai, Y., et al. (2011). Phytoremediation of arsenic-contaminated groundwater using arsenic hyperaccumulator Pteris vittata L.: effects of frond harvesting regimes and arsenic levels in refill water. Journal of Hazardous Materials, 185, 983–989.

    Article  CAS  Google Scholar 

  • Poynton, C. Y., Huang, J. W., Blaylock, M. J., Kochian, L. V., & Elless, M. P. (2004). Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation. Planta, 219(6), 1080–1088.

    Article  CAS  Google Scholar 

  • Smedley, P. L., Nicolli, H. B., Macdonald, D. M. J., Barros, A. J., & Tullio, J. O. (2002). Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemistry, 17, 259–284.

    Article  CAS  Google Scholar 

  • Srivastava, M., Ma, L. Q., & Santos, J. A. G. (2006). Three new arsenic hyperaccumulating ferns. Science of the Total Environment, 364, 24–31.

    Article  CAS  Google Scholar 

  • Srivastava, M., Ma, L. Q., Rathinasabapathi, B., & Srivastava, P. (2009). Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L. Bioresource Technology, 100, 1115–1121.

    Article  CAS  Google Scholar 

  • Su, Y. H., McGrath, S. P., Zhu, Y. G., & Zhao, F. J. (2008). Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytology, 180, 434–441.

    Article  CAS  Google Scholar 

  • Tu, S., & Ma, L. Q. (2003). Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environmental and Experimental Botany, 50, 243–251.

    Article  CAS  Google Scholar 

  • USEPA. (2000). Arsenic occurrence in public drinking water supplies. EPA 815-R-00-023. Washington, DC: Office of Groundwater and Drinking Water.

    Google Scholar 

  • Wang, J. R., Zhao, F. J., Meharg, A. A., Raab, A., Feldmann, J., & McGrath, S. P. (2002). Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology, 130, 1552–1561.

    Article  CAS  Google Scholar 

  • Wang, X., Ma, L. Q., Rathinasabapathi, B., Liu, Y. G., & Zeng, G. M. (2010). Uptake and translocation of arsenite and arsenate by Pteris vittata L.: effects of silicon, boron and mercury. Environmental and Experimental Botany, 68, 222–229.

    Article  CAS  Google Scholar 

  • Wei, C. Y., Chen, T. B., Huang, Z. C., & Zhang, X. Q. (2002). Cretan brake (Pteris cretica L.): an arsenic-accumulating plant. Acta Ecologica Sinica, 22(5), 777–778.

    Google Scholar 

  • Wei, S. H., Ma, L. Q., Saha, U., Mathews, S., Sundaram, S., Rathinasabapathi, B., et al. (2010). Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L. Environmental Pollution, 158, 1530–1535.

    Article  CAS  Google Scholar 

  • Welch, A. H., & Lico, M. S. (1998). Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada. Applied Geochemistry, 13, 521–539.

    Article  CAS  Google Scholar 

  • World Health Organization (WHO). (1996). Guidelines for drinking-water quality, health criteria and other supporting information (2nd ed., Vol. 2, pp. 940–949). Geneva: WHO.

    Google Scholar 

  • Zhao, F. J., Ma, J. F., Meharg, A. A., & McGrath, S. P. (2009). Arsenic uptake and metabolism in plants. New Phytology, 181, 777–794.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study has been financially supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (no. 708012) and the National Natural Science Foundation of China (nos. 41172224 and 40872160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, H., Zhong, Z., Lei, M. et al. Arsenic Uptake from Arsenic-Contaminated Water Using Hyperaccumulator Pteris vittata L.: Effect of Chloride, Bicarbonate, and Arsenic Species. Water Air Soil Pollut 223, 4209–4220 (2012). https://doi.org/10.1007/s11270-012-1185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1185-6

Keywords

Navigation