Skip to main content
Log in

Mineralization of Triadimefon Fungicide in Water by Electro-Fenton and Photo Electro-Fenton

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The complete mineralization of the conazole fungicide triadimefon in water at pH 3 using electrochemical advanced oxidation processes, electro-Fenton and photo electro-Fenton, was achieved. The electrochemical system consisted of a one-compartment electrochemical cell of 100 mL provided with a glassy carbon mesh electrode (cathode) and a concentric outer steel mesh as anode. The electrolysis was realized at constant current. The most remarkable features are as follows: (1) photo electro-Fenton process reaches a complete mineralization of triadimefon after 2 h of electrolysis with respect to electro-Fenton method; and (2) 4-chlorophenol, hydroquinone, carboxylic acids, and inorganic ions were detected as intermediates of degradation processes, which end with the complete mineralization of triadimefon to CO2 + H2O. (3) A reaction pathway for the oxidation of triadimefon fungicide by hydroxyl radicals that accounts for almost all detected intermediates is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  • Allen, W., Wolf, D., George, M., Hester, S., Sun, G., Thai, S.-F., Delker, D., Moore, T., Jones, C., Nelson, G., Roop, B., Leavitt, S., Winkfield, E., Ward, W., & Nesnow, S. (2006). Toxicity profiles in mice treated with hepatotumorigenic and non-hepatotumorigenic triazole conazole fungicides: propiconazole, triadimefon, and myclobutanil. Toxicology Pathology, 34, 853–862.

    Article  CAS  Google Scholar 

  • Boye, B., Dieng, M., & Brillas, E. (2002). Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods. Environmental Science and Technology, 36, 3030–3035.

    Article  CAS  Google Scholar 

  • Brillas, E., Sirés, I., & Oturan, M. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical Reviews, 109, 6570–6631.

    Article  CAS  Google Scholar 

  • Cañizares, P., Paz, R., Lobato, J., Sáez, C., & Rodrigo, M. A. (2006). Electrochemical treatment of the effluent on a fine-chemical manufacturing plant. Journal of Hazardous Materials B, 138, 173–181.

    Article  Google Scholar 

  • Chang, R. (2000). Physical chemistry for the chemical and biological sciences (pp. 445–500). Sausalito: University Science Books. Chapter 12.

    Google Scholar 

  • Chen, P.-J., Padgett, W., Moore, T., Winnik, W., Lambert, G., Thai, S.-F., Hester, S., & Nesnow, S. (2009). Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo. Toxicology and Applied Pharmacology, 234, 143–155.

    Article  CAS  Google Scholar 

  • Hu, L., Zhang, S., Li, W., & Hou, B. (2010). Electrochemical and thermodynamic investigation of diniconazole and triadimefon as corrosion inhibitors for copper in synthetic seawater. Corrosion Science, 52, 2891–2896.

    Article  CAS  Google Scholar 

  • Kidd, H., & James, D. R. (Eds.). (1991). The agrochemicals handbook (3rd ed.). Cambridge: Royal Society of Chemistry Information Services.

    Google Scholar 

  • Kusic, H., Koprivanac, N., & Srsan, L. (2006). Azo dye degradation using Fenton type processes assisted by UV irradiation: a kinetic study. Journal of Photochemistry and Photobiology A: Chemistry, 181, 195–202.

    Article  CAS  Google Scholar 

  • Martínez-Huitle, C., & Brillas, E. (2009). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Applied Catalysis B: Environmental, 87, 105–145.

    Article  Google Scholar 

  • Peng, T.-Z., Cheng, Q., & Yang, C. F. (2001). Adsorptive behavior and electrochemical determination of the anti-fungal agent ketoconazole. Fresenius' Journal of Analytical Chemistry, 370, 1082–1086.

    Article  CAS  Google Scholar 

  • Poyatos, J. M., Muñio, M. M., Almecija, M. C., Torres, J. C., Hontoria, E., & Osorio, F. (2010). Advanced oxidation processes for wastewater treatment: state of the art. Water, Air, and Soil Pollution, 205, 187–204.

    Article  CAS  Google Scholar 

  • Quiang, Z., Chang, J.-H., & Haung, C.-P. (2002). Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Research, 36, 85–94.

    Article  Google Scholar 

  • Ruiz, E. J., Arias, C., Brillas, E., Hernández-Ramírez, A., & Peralta-Hernández, J. M. (2011). Mineralization of Acid Yellow 36 azo dye by electro-Fenton and solar photoelectro-Fenton processes with a boron-doped diamond anode. Chemosphere, 82, 495–501.

    Article  CAS  Google Scholar 

  • Salazar, R., García-Segura, S., Ureta-Zañartu, M. S., & Brillas, E. (2011). Degradation of disperse azo dyes from waters by solar photoelectro-Fenton. Electrochimica Acta, 56, 6371–6379.

    Article  CAS  Google Scholar 

  • Sirés, I., Oturan, N., Otura, M., Rodríguez, R., Garrido, J., & Brillas, E. (2007). Electro-Fenton degradation of antimicrobials triclosan and triclocarban. Electrochimica Acta, 52, 5493–5503.

    Article  Google Scholar 

  • Skoumal, M., Arias, C., Cabot, P., Centellas, F., Garrido, J., Rodríguez, R., & Brillas, E. (2008). Mineralization of the biocide chloroxylenol by electrochemical advanced oxidation processes. Chemosphere, 71, 1718–1729.

    Article  CAS  Google Scholar 

  • Stamatis, N., Hela, D., & Konstantinou, I. (2010). Occurrence and removal of fungicides in municipal sewage treatment plant. Journal of Hazardous Materials, 175, 829–835.

    Article  CAS  Google Scholar 

  • Ting, W.-P., Lub, M.-C., & Huanga, Y.-H. (2008). The reactor design and comparison of Fenton, electro-Fenton and photoelectro-Fenton processes for mineralization of benzene sulfonic acid (BSA). Journal of Hazardous Materials, 156, 421–427.

    Article  CAS  Google Scholar 

  • Zhou, Q., Xiao, J., & Ding, Y. (2007). Sensitive determination of fungicides and prometryn in environmental water samples using multiwalled carbon nanotubes solid-phase extraction cartridge. Analytica Chimica Acta, 602, 223–228.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to DICYT–USACh and FONDECYT Grant 11090275 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Salazar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar, R., Ureta-Zañartu, M.S. Mineralization of Triadimefon Fungicide in Water by Electro-Fenton and Photo Electro-Fenton. Water Air Soil Pollut 223, 4199–4207 (2012). https://doi.org/10.1007/s11270-012-1184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1184-7

Keywords

Navigation