Skip to main content
Log in

Evaluation of the Influence of Multiple Environmental Factors on the Biodegradation of Dibenzofuran, Phenanthrene, and Pyrene by a Bacterial Consortium Using an Orthogonal Experimental Design

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

For a bioremediation process to be effective, we suggest to perform preliminary studies in laboratory to describe and characterize physicochemical and biological parameters (type and concentration of nutrients, type and number of microorganisms, temperature) of the environment concerned. We consider that these studies should be done by taking into account the simultaneous interaction between different factors. By knowing the response capacity to pollutants, it is possible to select and modify the right treatment conditions to enhance bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig.2

Similar content being viewed by others

References

  • Bautista, L. F., Sanz, R., Molina, M. C., González, N., & Sánchez, D. (2009). Effect of different non-ionic surfactants on the biodegradation of PAH by diverse aerobic bacteria. International Biodeterioration and Biodegradation, 63, 913–922.

    Article  Google Scholar 

  • Boochan, S., Britz, M. L., & Stanley, G. A. (1998). Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophila. Biotechnology and Bioengineering, 59, 482–494.

    Article  Google Scholar 

  • Chen, S.-H., & Aitken, M. D. (1999). Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environmental Science and Technology, 33, 435–439.

    Article  CAS  Google Scholar 

  • Chen, J., Wong, M. H., & Tam, N. (2008). Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp., a bacterial strain isolated from mangrove sediment. Marine Pollution Bulletin, 57, 695–702.

    Article  CAS  Google Scholar 

  • Eriksson, M., Ka, J.-O., & Mohn, W. W. (2001). Effects of low temperature and freeze–thaw cycles on hydrocarbon biodegradation in Artic Tundra soil. Applied and Environmental Microbiology, 67, 5107–5112.

    Article  CAS  Google Scholar 

  • González, N., Simarro, R., Molina, M. C., Bautista, L. F., Delgado, L., & Villa, J. A. (2011). Effect of surfactants on PAH biodegradation by a bacterial consortium and on the dynamics of the bacterial community during the process. Bioresource Technology, 102, 9438–9446.

    Article  Google Scholar 

  • Heitkamp, M. A., & Cerniglia, C. E. (1988). Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Applied and Environmental Microbiology, 54, 1612–1614.

    CAS  Google Scholar 

  • Jin, D., Jiang, X., Jing, X., & Ou, Z. (2007). Effects of concentration, head group and structure of surfactants on the biodegradation of phenanthrene. Journal of Hazardous Materials, 144, 215–221.

    Article  CAS  Google Scholar 

  • Kim, H. S., & Weber, W. J. (2003). Preferential surfactant utilization by a PAH-degrading strain: effects on micellar solubilization phenomena. Environmental Science and Technology, 37, 3574–3580.

    Article  CAS  Google Scholar 

  • Laha, S., & Luthy, R. G. (1992). Effect of non-ionic surfactants on the solubilization and mineralization of phenanthrene in soil–water systems. Biotechnology and Bioengineering, 40, 1367–1380.

    Article  CAS  Google Scholar 

  • Lee, K., Park, J.-W., & Ahm, I.-S. (2003). Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7. Journal of Hazardous Materials, 105, 157–167.

    Article  CAS  Google Scholar 

  • Leys, M. N., Bastiaens, L., Verstraete, W., & Springael, D. (2004). Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbons degradation by Mycobacterium and Sphingomonas in soil. Applied Microbiology and Biotechnology, 66, 726–736.

    Article  Google Scholar 

  • Lloyd, J., & Taylor, J. A. (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315–323.

    Article  Google Scholar 

  • Maier, M. R. (2009). Bacterial growth. In M. R. Maier, L. I. Pepper, & P. C. Gerba (Eds.), Environmental microbiology (pp. 37–54). New York: Academic Press.

    Chapter  Google Scholar 

  • Mohn, W., & Stewart, R. G. (2000). Limiting factors for hydrocarbon biodegradation at low temperatures in Artic soils. Soil Biology and Biochemistry, 32, 1161–1172.

    Article  CAS  Google Scholar 

  • Molina, M. C., González, N., Bautista, L. F., Sanz, R., Simarro, R., Sánchez, I., & Sanz, J. L. (2009). Isolation and genetic identification of PAH degrading bacteria from a microbial consortium. Biodegradation, 20, 789–800.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Young, R. N., & Gibbs, B. F. (2001). Surfactant enhanced remediation of contaminated soil: a review. Engineering Geology, 60, 371–380.

    Article  Google Scholar 

  • Muyzer, G., Hottenträger, S., Teske, A., & Wawer, C. (1995). Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA—a new molecular approach to analyse the genetic diversity of mixed microbial communities. In: A.D.L. Akkermans, J.D. van Elsas, and F.J. de Bruijn (Eds.), Molecular microbial ecology manual (pp. 3.4.4.1–3.4.4.22). Dordrecht, The Netherlands: Kluwer.

  • Pantsyrnaya, T., Blanchard, F., Delaunay, S., Georgen, J. L., Géudon, E., Guseva, E., & Boudrant, J. (2011). Effect of surfactants, dispersion and temperature on solubility and biodegradation of phenanthrene in aqueous media. Chemosphere, 83, 29–33.

    Article  CAS  Google Scholar 

  • Santos, E. C., Jacques, J. S., Bento, M. F., Peralba, M. C. R., Selbach, A. P., Sá, L. S., & Camargo, A. O. F. (2008). Anthracene biodegradation and surface activity by an iron-stimulated Pseudomonas sp. Bioresource Technology, 99, 2644–2649.

    Article  CAS  Google Scholar 

  • Sartoros, C., Yerushalmi, L., Berón, L., & Guiot, S. (2005). Effects of surfactant and temperature on biotransformation kinetics of anthracene and pyrene. Chemistry, 61, 1042–1050.

    Article  CAS  Google Scholar 

  • Schlessinger, W. H. (1991). Biogeochemistry. San Diego: Academic Press.

    Google Scholar 

  • Simarro, R., González, N., Bautista, L. F., Sanz, R., & Molina, M. C. (2010). Optimization of key abiotic factors of PAH (naphthalene, phenanthrene and anthracene) biodegradation process by a bacterial consortium. Water, Air, and Soil Pollution, 217, 365–374.

    Article  Google Scholar 

  • Sudipt, K. S., Om, V. S., & Rakesh, K. J. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends in Biotechnology, 20, 243–248.

    Article  Google Scholar 

  • Szabó, K. E., Itor, P. O. B., Bertilsson, S., Tranvik, L., & Eiler, A. (2007). Importance of rare and abundant populations for the structure and functional potential of freshwater bacterial communities. Aquatic Microbiology and Ecology, 47, 1–10.

    Article  Google Scholar 

  • Thibault, S. L., Anderson, M., & Frankenberger, W. T., Jr. (1996). Influence of surfactant on pyrene desorption and degradation in soils. Applied and Environmental Microbiology, 62, 283–287.

    CAS  Google Scholar 

  • Viñas, M., Sabaté, J., Espuny, M. J., & Solanas, A. M. (2005). Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Applied and Environmental Microbiology, 71, 7008–7018.

    Article  Google Scholar 

  • Wong, J. W. C., Lai, K. M., Wan, C. K., & Ma, K. K. (2000). Isolation and optimization of PAHs-degradative bacteria from contaminated soil for PAHs bioremediation. Water, Air, and Soil Pollution, 139, 1–13.

    Article  Google Scholar 

  • Wrenn, B. A., & Venosa, A. D. (1983). Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most probable number procedure. Canadian Journal of Microbiology, 42, 252–258.

    Article  Google Scholar 

  • Yuan, S. Y., Wei, S. H., & Chang, B. V. (2000). Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere, 41, 1463–1468.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Spanish Ministry of Environment (1.1-373/2005/3-B and 01/2006/2-1.1) and by Fundación Alfonso Martín Escudero. The consortium C2PL05 was isolated from soil samples kindly provided by Repsol S.A. This work is framed within the Official Máster en Ciencia y Tecnología Ambiental of the Universidad Rey Juan Carlos.

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Simarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simarro, R., González, N., Bautista, L.F. et al. Evaluation of the Influence of Multiple Environmental Factors on the Biodegradation of Dibenzofuran, Phenanthrene, and Pyrene by a Bacterial Consortium Using an Orthogonal Experimental Design. Water Air Soil Pollut 223, 3437–3444 (2012). https://doi.org/10.1007/s11270-012-1122-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1122-8

Keywords

Navigation