Skip to main content

Advertisement

Log in

Rapid Determination of Mercury in Contaminated Soil and Plant Samples Using Portable Mercury Direct Analyzer without Sample Preparation, a Comparative Study

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

An Erratum to this article was published on 07 June 2014

Abstract

The objective of this study was to determine the efficiency of a portable total mercury analyzer (OhioLumex RA-915+) in comparison with traditional analytical methods, such as inductively coupled plasma atomic emission spectrometry and cold vapor atomic absorption. The quick mercury analytical procedure with the direct mercury analyzer without sample pretreatment (such as sample digestion) was optimized for a variety of environmental samples, including contaminated soil and plant samples. The efficiency was evaluated using practical parameters, such as time required for analysis, sample amount, mercury species, accuracy, and precision/reproducibility, as well as using statistical analysis. Our results demonstrate that these three instrumental methods yielded similar mercury concentration values and statistical data, while the mercury direct analyzer had the advantages of not requiring for sample digestion and only requiring a small quantity of samples for distribution of mercury in a single root, a single root hair, and sub-regions of a single leaf of plants. These factors are used to justify use of the portable direct mercury analyzer under field conditions and validation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bartha, A., & Ikrenyi, K. (1982). Interfering effects on the determination of low concentrations of mercury in geological materials by cold vapor atomic absorption spectrometry. Analytica Chimica Acta, 139, 329–332.

    Article  CAS  Google Scholar 

  • Bashor, B., & Turri, P. (1986). A method for determining an allowable concentration of mercury in soil. Archives of Environmental Contamination and Toxicology, 15, 435–438.

    Article  CAS  Google Scholar 

  • Biester, H., & Scholz, C. (1997). Determination of mercury binding forms in contaminated soils: mercury pyrolysis versus sequential extractions. Environmental Science and Technology, 31, 233–239.

    Article  CAS  Google Scholar 

  • Chen, J., Shiyab, S., Han, F. X., Monts, D. L., Waggoner, C. A., Yang, Z. M., & Su, Y. (2009). Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology, 18, 110–121.

    Article  CAS  Google Scholar 

  • Clevenger, W. L., Smith, B. W., & Winefordner, J. D. (1997). Trace determination of mercury: A review. Critical Reviews in Analytical Chemistry, 27, 1–26.

    Article  CAS  Google Scholar 

  • Crock, J. G. (1996). Mercury. In D. L. Sparks, A. L. Page, P. A. Helmke, & R. H. Loeppert (Eds.), Methods of soil analysis. Part 3. Chemical methods (pp. 769–791). Madison: Soil Science of America.

    Google Scholar 

  • Grobenski, Z., Erler, W., & Voellkopf, U. (1985). Determination of mercury with Zeeman graphitefurnace AAS. Atomic Spectrometry, 6, 91–93.

    CAS  Google Scholar 

  • Han, F.X., Su, Y., Shi, Z., Xia, Y., Tian, W., Philips, V., & Monts, D.L. (2011) Mercury distribution and bioavailability in the floodplain soil of East Fork Popular Creek, Oak Ridge, Tennessee after a series of remediation. Geoderma (in press)

  • Han, F. X., Banin, A., Su, Y., Monts, D. L., Plodinec, M. J., Kingery, W. L., & Triplett, G. E. (2002). Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften, 89, 497–504.

    Article  CAS  Google Scholar 

  • Han, F. X., Shiyab, S., Chen, J., Su, Y., Monts, D. L., Waggoner, C. A., & Matta, F. B. (2008). Extractability and bioavailability of mercury from a mercury sulfide contaminated soil from Oak Ridge, Tennessee, USA. Water, Air, and Soil Pollution, 194, 67–75.

    Article  CAS  Google Scholar 

  • Han, F. X., Su, Y., Monts, D. L., Waggoner, C. A., & Plodinec, M. J. (2006). Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Science of the Total Environment, 368, 753–768.

    Article  CAS  Google Scholar 

  • Keith, L. H., Crummett, W., Deegan, J., Jr., Libby, R. A., Taylor, J. K., & Wentler, G. (1983). Principles of environmental analysis. Analytical Chemistry, 55, 2210–2218.

    Article  CAS  Google Scholar 

  • Lee, S. H., Jung, K. H., & Lee, D. S. (1989). Determination of mercury in environmental samples by cold vapor generation and atomic absorption spectrometry with a gold-coated graphite furnace. Talanta, 36, 999–1003.

    Article  CAS  Google Scholar 

  • MacDougall, D. (1980). Guidelines for data acquisition and data quality evaluation in environmental chemistry. Analytical Chemistry, 52, 2242–2249.

    Article  CAS  Google Scholar 

  • Montaser, A., & Golightly, D. W. (1992). Inductively coupled plasmas in analytical atomic spectroscopy (2nd ed.). New York: VCH.

    Google Scholar 

  • Shiyab, S., Chen, J., Han, F. X., Monts, D. L., Matta, F. B., Gu, M., & Su, Y. (2009a). Phytotoxicity of mercury in Indian mustard (Brassica juncea L.). Ecotoxicology and Environmental Safety, 72, 619–625.

    Article  CAS  Google Scholar 

  • Shiyab, S., Chen, J., Han, F. X., Monts, D. L., Matta, F. B., Gu, M., Su, Y., & Masad, M. A. (2009b). Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.). Environmental Toxicology, 24(5), 462–471.

    Article  CAS  Google Scholar 

  • Skoog, D. A., Holler, F. J., & Crouch, S. R. (2007). Principles of instrumental analysis. Belmont: Thomson Brooks/Cole.

    Google Scholar 

  • Su, Y., Han, F. X., Chen, J., Sridhar, B. B. M., & Monts, D. L. (2008). Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), Beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). International Journal of Phytoremediation, 10, 547–560.

    Article  Google Scholar 

  • USEPA (2010). Mercury, basic information. http://www.epa.gov/hg/about.htm. Accessed 25 June 2011.

  • Van Delft, W., & Vos, G. (1988). Comparison of digestion procedures for the determination of mercury in soils by cold vapor atomic adsorption spectrometry. Analytica Chimica Acta, 209, 147–156.

    Article  Google Scholar 

  • Velitchkova, N., Pentcheva, E. N., & Dashalova, N. (2004). Determination of arsenic, mercury, selenium, thallium, tin and bismuth in environmental materials by inductively coupled plasma emission spectrometry. Spectrochim Acta Part B, 59, 871–882.

    Article  Google Scholar 

  • Wu, S., Uddin, M. A., Nagano, S., Ozaki, M., & Sasaoka, E. (2011). Fundamental study on decomposition characteristics of mercury compounds over solid powder by temperature-programmed decomposition desorption mass spectrometry. Energy & Fuels, 25, 144–153.

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by US Department of Energy’s Office of Science and Technology through Cooperative Agreement DE-FC01-06EW-07040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxiang X. Han.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11270-014-1912-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, J.G., Han, F.X., Su, Y. et al. Rapid Determination of Mercury in Contaminated Soil and Plant Samples Using Portable Mercury Direct Analyzer without Sample Preparation, a Comparative Study. Water Air Soil Pollut 223, 2361–2371 (2012). https://doi.org/10.1007/s11270-011-1030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-1030-3

Keywords

Navigation