Skip to main content
Log in

Suitability of Immobilized Pseudomonas fluorescens SM1 Strain for Remediation of Phenols, Heavy Metals, and Pesticides from Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Immobilized microbial cells for the biological treatment have the potential to degrade toxic chemicals faster than conventional wastewater treatment systems. In the present study, suitability of immobilized Pseudomonas fluorescens SM1 strain in calcium alginate beads for remediation of the major toxicants in Indian water bodies was tested by means of GC/HPLC and AAS techniques. Roughly 80% reduction in the concentration of phenols was observed by immobilized SM1 cells compared with 60% by the free cells. Also, in the case of the bioremediation of heavy metals, immobilized SM1 cells were found to be more efficient compared with the free cells. Suspension of P. fluorescens SM1 cells in the test model water for 24 h brought down the concentrations of Cu++, Cd++, Ni++, and Pb++ by more than 75% under free cell state and 7–9% better efficiency under the immobilized conditions. However, Cr(VI) could show only 44% removal by the cell immobilized system, whereas a mere 35% reduction in the Cr(VI) levels was shown in the test model water by the free SM1 cells under the same conditions. Moreover, a model water containing 2,000 ppb of BHC, 1,248 ppb mancozeb, and 312 ppb 2,4-D passed through the cell immobilized column resulted in the decline in their concentrations up to 362 ppb, 750 ppb, and 126 ppb, respectively. Generally, AAS, HPLC, and GC analyses of treated test model waters with the free and immobilized SM1 cells exhibited high potential of immobilized SM1 in detoxification of test water. From the results, we conclude that immobilized cells of P. fluorescens SM1 strain were quite effective in bioremediation of major toxicants present in Indian water bodies, and we also recommend the use of immobilized bacterial cells rather than the free cells for the bioremediation/detoxification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aggelis, G., Ehiiotis, C., Nerud, F., Stoychev, I., Lyberatos, G., & Zervakis, G. I. (2002). Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process. Applied Microbiology and Biotechnology, 59, 353–360.

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA). (1998). Standard Methods for the Examination of Water and Wastewater (20th ed.). Washington, DC: APHA.

    Google Scholar 

  • Audet, P., Paquin, C., & Lacroix, C. (1989). Sugar utilization and acid production by free and entrapped cells of Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Lactococcus lactis subsp. lactis in a whey permeate medium. Applied and Environmental Microbiology, 55, 185–189.

    CAS  Google Scholar 

  • Bachmann, A., Walet, P., Wijnen, P., De Bruin, W., Hunljens, J. L. M., Roelofsen, W., et al. (1988). Biodegradation of alpha- and beta-hexachlorocyclohexane in a soil slurry under different redox conditions. Applied and Environmental Microbiology, 54, 143–149.

    CAS  Google Scholar 

  • Barlett, R., & James, B. R. (1979). Behaviour of chromium in soils. III. Oxidation. Journal of Environmental Quality, 8, 31–34.

    Article  Google Scholar 

  • Bettman, H., & Rehm, H. J. (1984). Degradation of phenol by polymer entrapped microorganisms. Applied Microbiology Biotechnology, 20, 285–290.

    Google Scholar 

  • Bhushan, R., Thapar, S., & Mathtir, R. P. (1997). Accumulation pattern of pesticides in tropical fresh waters. Biomedical Chromatography, 11, 143–150.

    Article  CAS  Google Scholar 

  • BIS 13832 (1993). Bureau of Indian Standards, New Delhi.

  • Cassidy, M. B., Lee, H., & Trevors, J. T. (1996). Environmental applications of immobilized microbial cells, a review. Journal of Industrial Microbiology, 16, 79–101.

    Article  CAS  Google Scholar 

  • Cassidy, M. B., Shaw, K. W., Lee, H., & Trevors, J. T. (1997). Enhanced mineralization of pentachlorophenol by κ-carrageenan encapsulated Pseudomonas sp. UG30. Applied Microbiology and Biotechnology, 47, 108–113.

    Article  CAS  Google Scholar 

  • Cheetham, P. S. J., Blunt, K. W., & Bocke, C. (1979). Physical studies on cell immobilization using calcium alginate gels. Biotechnology and Bioengineering, 21(12), 2155–2168.

    Article  CAS  Google Scholar 

  • De, A. K., (1994). In: Environmental chemistry, Wiley Eastern Limited, New Age International Publishers Ltd., New Delhi

  • de-Bashan, L. E., & Bashan, Y. (2008). Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant–bacterium interactions. Applied and Environmental Microbiology, 74(21), 6797–6802.

    Article  CAS  Google Scholar 

  • Fang, S. C. (1969). In P. C. Kearney & D. D. Kaufman (Eds.), Degradation of herbicides. New York: Marcel Dekker.

    Google Scholar 

  • Frioni, L., Le Roux, C., Dommergues, Y. R., & Diem, H. G. (1994). Inoculant made of encapsulated Frankia, assessment of Frankia growth within alginate beads. World Journal of Microbiology & Biotechnology, 10, 118–121.

    Article  Google Scholar 

  • Fulthorpe, R. R., Rhodes, A. N., & Tiedje, J. M. (1996). Pristine soils mineralize 3-chlorobenzoate and 2, 4-dichlorophenoxyacetate via different microbial populations. Applied and Environmental Microbiology, 62, 1159–1166.

    CAS  Google Scholar 

  • Ganguli, A., & Tripathi, A. K. (2002). Bioremediation of toxic chromium from electroplating effluent by chromate reducing Pseudomonas aeruginosa A2chr in two bioreactors. Applied Microbiology and Biotechnology, 58, 416–420.

    Article  CAS  Google Scholar 

  • Gardin, H., & Pauss, A. (2001). κ-carrageenan/gelatin gel beads for the co-immobilization of aerobic and anaerobic microbial communities degrading 2, 4, 6-trichlorophenol under air-limited conditions. Applied Microbiology and Biotechnology, 56, 517–523.

    Article  CAS  Google Scholar 

  • Haider, K. (1979). Degradation and metabolization of lindane and other hexachlorocyclohexane isomers by anaerobic and aerobic soil microorganisms. Zeitschrift für Naturforschung. Teil C, 34, 1066–1069.

    Google Scholar 

  • Heitkamp, M. A., Camel, V., Reuter, T. J., & Adams, W. J. (1990). Biodegradation of p-nitrophenol in an aqueous waste stream by immobilized bacteria. Applied and Environmental Microbiology, 56(10), 2967–2973.

    CAS  Google Scholar 

  • Heritage, A. D., & MacRae, I. C. (1977). Degradation of lindane by cell-free preparations of Clostridium sphenoides. Applied and Environmental Microbiology, 34(2), 222–224.

    CAS  Google Scholar 

  • Ignatov, O. V., Gulii, O. I., Singirtsev, I. N., Scherbakov, A. A., Makarov, O. E., & Ignatov, V. V. (2002). Effects of p-nitrophenol and organophosphorous nitroaromatic insecticides on the respiratory activity of free and immobilized cells of strains S-11 and BA-11 of Pseudomonas putida. Prikladnaia Biokhimiia i Mikrobiologiia, 38, 278–285.

    CAS  Google Scholar 

  • Imai, R., Nagata, Y., Fukuda, M., Takagi, M., & Yano, K. (1991). Molecular cloning of a Pseudomonas paucimobilis gene encoding a 17-kilodalton polypeptide that eliminates HCl molecules from gamma-hexachlorocyclohexane. Journal of Bacteriology, 173, 6811–6819.

    CAS  Google Scholar 

  • Jagnow, G., Haider, K., & Ellwardt, P. C. (1977). Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultative anaerobic bacteria. Archives of Microbiology, 115, 285–292.

    Article  CAS  Google Scholar 

  • Johri, A. K., Dua, M., Tuteja, D., Saxena, R., Saxena, D. M., & Lal, R. (1998). Degradation of alpha, beta, gamma and delta-hexachlorocylohexanes by Sphingomonas paucimobilis. Biotechnological Letters, 20, 885–889.

    Article  CAS  Google Scholar 

  • Kaufman, D. D. (1967). Degradation of carbamate herbicides in soil. Journal of Agricultural and Food Chemistry, 15, 582–591.

    Article  CAS  Google Scholar 

  • Kearney, P. C., & Kaufman, D. D. (1965). Enzyme from soil bacterium hydrolyses phenylcarbamate herbicides. Science, 147, 740–741.

    Article  CAS  Google Scholar 

  • Keweloh, H., Heipieper, H. J., & Rehm, H. J. (1989). Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Applied Microbiology and Biotechnology, 31, 383–389.

    Article  CAS  Google Scholar 

  • Kissi, M., Mountadar, M., Assobhei, O., Gargiulo, E., Palmieri, G., Giardina, P., et al. (2001). Roles of two white-rot basidiomycete fungi in decolorisation and detoxification of olive mill waste water. Applied Microbiology and Biotechnology, 57, 221–226.

    Article  CAS  Google Scholar 

  • Kumari, R., Subudhi, S., Suar, M., Dhingra, G., Raina, V., Dogra, C., et al. (2002). Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Applied and Environmental Microbiology, 68, 6021–6028.

    Article  CAS  Google Scholar 

  • Kurosawa, H., Nomura, N., & Tanaka, H. (1989). Ethanol production from starch by a co-immobilized mixed culture system of Aspergillus awamori and Saccharomyces cerevisiae. Biotechnology and Bioengineering, 33(5), 716–723.

    Article  CAS  Google Scholar 

  • Lebeau, T., Bagot, D., Jezequel, K., & Fabre, B. (2002). Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium, effects of Cd, pH and techniques of culture. The Science of the Total Environment, 291, 73–83.

    Article  CAS  Google Scholar 

  • Li, W. Y., Xu, Y., & Feng, J. (2009). Treatment of coking wastewater by using an immobilized-microbial-cell anaerobic–aerobic system. Energy Sources, 31, 1397–1405.

    Article  CAS  Google Scholar 

  • Linko, P., & Linko, Y. Y. (1983). Application of immobilized microbial cells. In I. Chibata & L. B. Wingard Jr. (Eds.), Immobilized microbial cells. Applied Biochemistry and Bioengineering (pp. 54–151). New York: Academic.

    Google Scholar 

  • Lo, W., Chua, H., Wong, M. F., & Yu, P. (2003). Bacterial biosorbent for removing and recovering copper from electroplating effluents. Water Science and Technology, 47, 251–256.

    CAS  Google Scholar 

  • MacRae, I. C., Raghu, K., & Castro, T. F. (1967). Persistence and biodegradation of four common isomers of benzene hexachloride in submerged soils. Journal of Agricultural and Food Chemistry, 15, 911–914.

    Article  CAS  Google Scholar 

  • MacRae, I. C., Yamaya, & Yoshida, T. (1984). Persistence of hexachlorocyclohexane isomers in soil suspensions. Soil Biology and Biochemistry, 16, 285–286.

    Article  CAS  Google Scholar 

  • Mater, D. D. G., Barbotin, J. N., Saucedo, J. E. N., & Thomes, T. N. (1995). Effect of gelation temperature on gel-dissolving solution on cell viability and recovery of two Pseudomonas putida strains co-immobilized within calcium alginate or κ-carrageenan gel beads. Biotechnology Techniques, 9, 747–752.

    Article  CAS  Google Scholar 

  • Megharaj, M., Avudainayagam, S., & Naidu, R. (2003). Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Current Microbiology, 47(1), 51–54.

    Article  CAS  Google Scholar 

  • Nagata, Y., Nariya, T., Ohtomo, R., Fukuda, M., Yano, K., & Takagi, M. (1993). Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of gamma-hexachlorocyclohexane in Pseudomonas paucimobilis. Journal of Bacteriology, 75(20), 6403–6410.

    Google Scholar 

  • Nawab, A., Aleem, A., & Malik, A. (2003). Determination of organochlorine pesticides in agricultural soil with special reference to γ-HCH degradation by Pseudomonas strains. Bioresource Technology, 88(1), 41–46.

    Article  CAS  Google Scholar 

  • Ohisa, N., & Yamaguchi, M. (1978). Gamma-BHC degradation accompanied by the growth of Clostridium rectum isolated from paddy field soil. Agricultural and Biological Chemistry, 42, 1819–1823.

    Article  CAS  Google Scholar 

  • Ohisa, N., Yamaguchi, M., & Kurihara, N. (1980). Lindane degradation by cell-free extracts of Clostridium rectum. Archives of Microbiology, 125, 221–225.

    Article  CAS  Google Scholar 

  • Pandey, A. K., Pandey, S. D., Misra, V., & Srimal, A. K. (2003). Removal of chromium and reduction of toxicity to Microtox system from tannery effluent by the use of calcium alginate beads containing humic acid. Chemosphere, 51, 329–333.

    Article  CAS  Google Scholar 

  • Paul, E., Fages, J., Blanc, P., Goma, G., & Pareilleux, A. (1993). Survival of alginate-entrapped cells of Azospirillum lipoferum during dehydration and storage in relation to water properties. Applied Microbiology and Biotechnology, 40, 34–39.

    Article  CAS  Google Scholar 

  • Podowski, A. A., Feroz, M., Mertens, P., & Khan, M. A. Q. (1984). HPLC analysis of organochlorines using UV and radioactivity flow detectors. Bulletin of Environmental Contamination and Toxicology, 32, 301–309.

    Article  CAS  Google Scholar 

  • Rani, M. J., Hemambika, J., Hemapriya, J., & Kannan, V. R. (2010). Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: a biosorption approach. African Journal of Environmental Science Technology, 4(2), 77–83.

    Google Scholar 

  • Rehana, Z., Malik, A., & Ahmad, M. (1995). Mutagenic activity of the Ganges water with special reference to the pesticide pollution in the river between Kachla to Kannauj (U.P.), India. Mutation Research, 343, 137–144.

    Article  CAS  Google Scholar 

  • Sag, Y., Ozer, D., & Kutsal, T. (1995). A comparative study of the biosorption of Pb(l1) ions to Z. ramigera and R. arrhitus. Process Biochemistry, 30, 169–174.

    CAS  Google Scholar 

  • Sahu, S. K., Patnaik, K. K., Sharmila, M., & Sethunathan, N. (1990). Degradation of alpha-, beta-, and gamma-hexachlorocyclohexane by a soil bacterium under aerobic conditions. Applied and Environmental Microbiology, 56, 3620–3622.

    CAS  Google Scholar 

  • Saxena, D., Joshi, N., & Srivaslava, S. (2002). Mechanism of copper resistance in a copper mine isolate Pseudomonas putida strain S4. Current Microbiology, 45, 410–414.

    Article  CAS  Google Scholar 

  • Senoo, K., & Wada, H. (1989). Isolation and identification of an aerobic y-HCH-decomposing bacterium from soil. Soil Science and Plant Nutrition, 35, 79–87.

    CAS  Google Scholar 

  • Singh, K. P., Takroo, R., Ray, P. K. (1987). Analysis of pesticide residues in water. ITRC Manual No. 1, Industrial Toxicology Research Centre, Lucknow (UP) India

  • Thomas, J. C., Berger, F., Jacquicr, M., Bernikkon, D., Baud-Grasset, F., Truffaul, N., et al. (1996). Isolation and characterization of a novel y-hexachlorohexane degrading bacterium. Journal of Bacteriology, 178, 6049–6055.

    CAS  Google Scholar 

  • Trevors, J. T., Elasas, J. D., Lee, H., & Welters, A. C. (1993). Survival of alginate-encapsulated Pseudomonas fluorescens cells in soil. Applied Microbiology and Biotechnology, 39, 637–643.

    Article  Google Scholar 

  • Tsekova, K., & Ilieva, S. (2001). Copper removal from aqueous solution using Aspergillus niger mycelia in free and polyurethane bound form. Applied Microbiology and Biotechnology, 42, 636–637.

    Article  Google Scholar 

  • van Elsas, J. D., Trevors, J. T., Jain, D., Wolters, A. C., Heijnen, C. E., & van Overbeek, L. S. (1992). Survival of, and colonization by, alginate-encapsulated Pseudomonas fluorescens cells following introduction into soil. Biology and Fertility of Soils, 14, 14–22.

    Article  Google Scholar 

  • Vílchez, C., & Vega, J. M. (1994). Nitrite uptake by Chlamydomonas reinhardtii cells immobilized in calcium alginate. Applied Microbiology Biotechnology, 41, 137–141.

    Google Scholar 

  • Wasi, S., Jeelani, G., & Ahmad, M. (2008). Biochemical characterization of a multiple heavy metal, pesticides and phenol resistant Pseudomonas fluorescens strain. Chemosphere, 71, 1348–1355.

    Article  CAS  Google Scholar 

  • Wasi, S., Tabrez, S., & Ahmad, M. (2010). Isolation and characterization of a Pseudomonas fluorescens strain tolerant to major Indian water pollutants. Journal of Bioremediation and Biodegradation, 1, 101. doi:10.4172/2155-6199.1000101.

    Google Scholar 

  • Windholz, M., Budavari, S., Stroumtosos, L. Y., & Fertig, M. N. (1976). The Merck index (9th ed., pp. 580–581). Rathway: Merck.

    Google Scholar 

  • Xu, X., Philip, S., Stewart, S. P., & Chen, X. (1996). Transport limitation of chlorine disinfection of Pseudomonas aeruginosa entrapped in alginate beads. Biotechnology and Bioengineering, 49, 93–100.

    Article  CAS  Google Scholar 

  • Zezza, N., Pasini, G., Lonbardi, A., Mercenier, A., Spettoli, P., Zamorani, A., et al. (1993). Production of a bacteriocin active on lactate-fermenting clostridia by Lactobacillus lactis sp. lactis immobilized in coated alginate beads. The Journal of Dairy Research, 60, 581–591.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial assistance of the department by the UGC, New Delhi under its DRS program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masood Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasi, S., Tabrez, S. & Ahmad, M. Suitability of Immobilized Pseudomonas fluorescens SM1 Strain for Remediation of Phenols, Heavy Metals, and Pesticides from Water. Water Air Soil Pollut 220, 89–99 (2011). https://doi.org/10.1007/s11270-010-0737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0737-x

Keywords

Navigation