Skip to main content
Log in

Adsorption of Petroleum Monoaromatics from Aqueous Solutions Using Granulated Surface Modified Natural Nanozeolites: Systematic Study of Equilibrium Isotherms

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Petroleum monoaromatics including benzene, toluene, ethylbenzene, and xylenes (BTEX) are among the notorious volatile organic compounds that contaminate water and soil. In this study, a surfactant- modified natural zeolite and its relevant granulated nanozeolites were evaluated as potential adsorbents for removal of petroleum monoaromatics from aqueous solutions. All experiments performed in batch mode at constant temperature of 20°C and pH of 6.8 for 48 h. The results revealed that the amount of BTEX uptake on granulated zeolites nanoparticles were remarkably higher than the parent micron size natural zeolite (in the order of four times). The isotherms data were analyzed using five models namely, Langmuir, Fruendlich, Elovich, Temkin, and Dubinin–Radushkevich models. It was concluded that the Langmuir model fits the experimental data. The measured adsorption capacities were 3.89 and 4.08 mg of monoaromatics per gram of hexadecyltrimethylammonium-chloride and n-cetylpyridinium bromide (CPB)-modified granulated nanozeolite, respectively. Considering the type of surfactant, adsorbents modified with CPB showed greater tendency for the adsorption of the adsorbates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Accay, K., Sirkecioglu, A., Tather, M., Savasci, O. T., & Erdem-Senatalar, A. (2004). Wet ball milling of zeolite HY. Powder Technology, 142, 121.

    Article  Google Scholar 

  • Aksu, Z. (2001). Biosorption of reactive dyes by dried activated sludge: Equilibrium and kinetic modeling. Biochemical Engineering Journal, 7, 79–84.

    Article  CAS  Google Scholar 

  • Al-Qodah, Z., Lafi, W. K., Al-Anber, Z., Al-Shannag, M., & Harahsheh, A. (2007). Adsorption of methylene blue by acid and heat treated diatomaceous silica. Desalination, 217, 212–224.

    Article  CAS  Google Scholar 

  • Bowman, R. S. (2003). Review: Applications of surfactant-modified zeolites to environmental remediation. Microporous and Mesoporous Materials, 61, 43–56.

    Article  CAS  Google Scholar 

  • Breck, D. W. (1974). Zeolite molecular sieves. New York: Wiley.

    Google Scholar 

  • Carmody, O., Frost, R., Xi, Y., & Kokot, S. (2007). Adsorption of hydrocarbons on organoclays—Implications for oil spill remediation. Journal of Colloid and Interface Science, 305, 17–24.

    Article  CAS  Google Scholar 

  • Charkhi, A., Kazemian, H., & Kazemeini, M. (2010). Optimized experimental design for natural Clinoptilolite zeolite ball milling to produce nano powders. Powder Technology. doi:10.1016/j.powtec.2010.05.034.

    Google Scholar 

  • Daifullah, A. A. M., & Girgis, B. S. (2003). Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids and Surfaces A, 214, 181–193.

    Article  CAS  Google Scholar 

  • Freundlich, H. (1906). Adsorption in solution. Zeitschrift für Physikalische Chemie, 57, 384–470.

    Google Scholar 

  • Haghseresht, F., & Lu, G. (1998). Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy and Fuels, 12, 1100–1107.

    Article  CAS  Google Scholar 

  • Hamdaoui, O. (2006). Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. Journal of Hazardous Materials, B135, 264–273.

    Article  Google Scholar 

  • Hameeda, B. H., & El-Khaiary, M. I. (2008). Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies. Journal of Hazardous Materials, 154, 237–244.

    Article  Google Scholar 

  • Hinz, C. (2001). Description of sorption data with isotherm equations. Geoderma, 99, 225–243.

    Article  CAS  Google Scholar 

  • Kazemian, H. (2002). Zeolite science in Iran: A brief review. In Proc. of Zeolite, The 6th Int. Conf. on the Occurrence, Properties and Utilization of Natural Zeolites, Thessaloniki, Greece.

  • Kazemian, H., & Mallah, M. H. (2008). Removal of chromate ion from synthetic water using MCM-41/ZSM-5 composite. Iranian Journal of Environmental Health Science & Engineering, 5(1), 73–77.

    CAS  Google Scholar 

  • Kennedy, M. H., Vijaya, J. J., Kayalvizhi, K., & Sekaran, G. (2007). Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage process. Journal of Chemical Engineering, 132, 279–287.

    Article  CAS  Google Scholar 

  • Lin, H. S., & Huang, Y. C. (1999). Adsorption of BTEX from aqueous solution by macroreticular resins. Journal of Hazardous Materials, A70, 21–37.

    Article  Google Scholar 

  • Marcussen, E. (1993). Encapsulation and controlled release (pp. 163–172). Cambridge: The Royal Society of Chemistry.

    Book  Google Scholar 

  • Mardini, F. A., & Legube, B. (2008). Effect of the adsorbate (Bromacil) equilibrium concentration in water on its adsorption on powdered activated carbon Part 1: Equilibrium parameters. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2009.05.003.

    Google Scholar 

  • Menhaje-Bena, R., Kazemian, H., Shahtaheri, S., Ghazi-Khansari, M., & Hosseini, M. (2004). Evaluation of iron modified zeolites for removal of arsenic from drinking water. Studies in Surface Science and Catalysis, 154(2), 1892–1899.

    Article  Google Scholar 

  • Mohanty, K., Thammu Naidu, J., Meikap, M. J., & Biswas, M. N. (2006). Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Indian Engineering Chemistry Research, 45, 5165–5171.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Kavitha, D. (2002). Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments, 54, 47–58.

    Article  CAS  Google Scholar 

  • Rengaraj, S., Kim, Y., Joo, C. K., Choi, K., & Yi, J. (2004). Batch adsorptive removal of copper ions in aqueous solutions by ion exchange resins: 1200H and IRN97H. Korean Journal of Chemical Engineering, 21, 187–194.

    Article  CAS  Google Scholar 

  • Seifi, L. (2010) Removal of Volatile Organic Compounds (VOCs) from contaminated water, using inorganic modified nanomaterials, PhD dissertation, Tehran University, Tehran, Iran.

  • Sheng, G. D., Shao, D. D., Ren, X. M., Wang, X. Q., Li, J. X., Chen, Y. X., et al. (2010). Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 178, 505–516.

    Article  CAS  Google Scholar 

  • Simpson, J. A., & Bowman, R. S. (2009). Nonequilibrium sorption and transport of volatile petroleum hydrocarbons in surfactant-modified zeolite. Journal of Contaminant Hydrology, 108(1–2), 1–11.

    Article  CAS  Google Scholar 

  • Smith, J. A., Bartelt-Hunt, S. L., & Burns, S. E. (2003). Sorption and permeability of gasoline hydrocarbons in organobentonite porous media. Journal of Hazardous Materials, 96, 91–97.

    Article  CAS  Google Scholar 

  • Suen, S. Y. (1996). A comparison of isotherm and kinetic models for binarysolute adsorption to affinity membranes. Journal of Chemical Technology and Biotechnology, 65, 249–257.

    Article  CAS  Google Scholar 

  • Tempkin, M. J., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim., 12, 217–256.

    Google Scholar 

  • Tiburtius, E. R. L., Peralta-Zamora, P., & Emmel, A. (2005). Treatment of gasoline-contaminated waters by advanced oxidation process. Journal of Hazardous Materials, 126, 86–90.

    Article  CAS  Google Scholar 

  • Torabian, A., Kazemian, H., Seifi, L., Bidhendi, G. N., Azimi, A. A., & Ghadiri, S. K. (2010). Removal of petroleum aromatic hydrocarbons by surfactant-modified natural zeolite: the effect of surfactant. Clean-Soil, Air Water, 38(1), 77–83.

    Article  CAS  Google Scholar 

  • Tsai, W. T., Lai, C. W., & Su, T. Y. (2006). Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents. Journal of Hazardous Materials, B134, 169–175.

    Article  Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetic of adsorption carbon solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89, 31–59.

    Google Scholar 

  • Weber, W. R., & Rummer, R. R. (1965). Intraparticle transport of sulfonated alkyl benzymes in a porous solid diffusion with non-linear adsorption. Water Resources Research, 1, 361–368.

    Article  CAS  Google Scholar 

  • Weber, T. W., & Chakkravorti, R. K. (1974). Pore and solid diffusion models for fixed-bed adsorbers. AIChE Journal, 20, 228–238.

    Article  CAS  Google Scholar 

  • World Health Organization. (2008). Guidelines for drinking-water quality, 3rd Ed., Vol. 1 (Recommendations), Geneva.

Download references

Acknowledgments

We acknowledge the National Iranian Oil Production and Distribution Company (NIOPDC) for financial support of this study. Mr. F. Farhadi and the SPAG zeolite research group are also acknowledged for their fruitful scientific discussions and providing and preparation of the zeolitic materials. The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Kazemian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifi, L., Torabian, A., Kazemian, H. et al. Adsorption of Petroleum Monoaromatics from Aqueous Solutions Using Granulated Surface Modified Natural Nanozeolites: Systematic Study of Equilibrium Isotherms. Water Air Soil Pollut 217, 611–625 (2011). https://doi.org/10.1007/s11270-010-0614-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0614-7

Keywords

Navigation