Skip to main content

Advertisement

Log in

Processes in Pathogenic Biocolloidal Contaminants Transport in Saturated and Unsaturated Porous Media: A Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

There are several classes of subsurface colloids, abiotic and biotic. Basically, small particles of inorganic, organic and pathogenic biocolloids variety exist in natural subsurface system. Transport of these pathogenic biocolloidal contaminants (Viruses, bacteria and protozoa) pose a great risk in water resources and have caused large outbreaks of waterborne diseases. Biocolloid transport processes through saturated and unsaturated porous media is of significant interest, from the perspective of protection of groundwater supplies from contamination, assessment of risk from pathogens in groundwater and for the design of better water treatment systems to remove biocolloids from drinking water supplies This paper has reviewed the large volume of work that has already been done and the progress that has been made towards understanding the various basic multi-processes to predicting the biocolloid transport in saturated and unsaturated porous media. There are several basic processes such as physical, chemical and biological processes which are important in biocolloid transport. The physical processes such as advection, dispersion, diffusion, straining and physical filtration, adsorption and biological processes such as growth/decay processes and include active adhesion/detachment, survival and chemotaxis are strongly affected on biocolloid transport in saturated and unsaturated porous media. The unsaturated zone may play an important role in protecting aquifers from biocolloidal contamination by retaining them in the solid phase during their transport through the zone. Finally, author here highlighted the future research direction based on his critical review on biocolloid transport in saturated and unsaturated porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

C :

Total biocolloidal mass particle concentration (kg/m3)

D :

Hydrodynamic dispersion coefficient of colloids (m2/s)

d p :

Particle diameter (m)

d m :

Diameter of medium/collector (m)

d 50 :

Median grain size

dh/dl :

Hydraulic gradient (Pa/m)

K :

Permeability of porous medium (m2)

K d :

Dissociation constant

S :

Total retained biocolloid concentration (kg/kg)

t :

Duration of time (s)

v :

Pore water velocity (m/s)

v c :

Chemotactic velocity (m/s)

x :

Distance travelled (m)

X (C F ) :

Chemotactic sensitivity coefficient

θ :

Effective porosity

ρ bulk :

Bulk density of porous medium, kg/m3

ADS:

Advection–dispersion–sorption

AWI:

Air–water interface

DLVO:

Derjaguin–Landau–Verwey–Overbeek

DO:

Dissolved oxygen

E. coli :

Escherichia coli

SWI:

Solid–water interface

References

  • Abdel-Fattah, A. I., & EL-Genk, M. S. (1998). On colloidal particle sorption onto a stagnant air-water interface. Advances in Colloid and Interface Science, 78, 237–266.

    Article  CAS  Google Scholar 

  • Adamczyk, Z., Jaszczolt, K., & Siwelk, B. (2005). Irreversible adsorption of colloid particles on heterogeneous surfaces. Applied Surface Science, 252, 723–729.

    Article  CAS  Google Scholar 

  • Adler, J. (1966). Chemotaxis in bacteria. Science, 153(3737), 708–716.

    Article  CAS  Google Scholar 

  • Arturo, A. K., & Auset, M. (2007). A review of visualization technique of biocolloid transport processes at the pore scale under saturated and unsaturated conditions. Advances in Water Resources, 30, 1392–1407.

    Google Scholar 

  • Auset, M., & Keller, A. A. (2004). Pore-scale processes that control dispersion of colloids in saturated porous media. Water Resources Research, 40, W03503. doi:10.1029/2003WR002800.

    Article  Google Scholar 

  • Ausland, G., Stevik, T. K., Hanssen, J. F., Kohler, J. C., & Jenssen, P. D. (2002). Intermittent filtration of wastewater—removal of fecal coliforms and fecal streptococci. Water Research, 36, 3507–3516.

    Article  CAS  Google Scholar 

  • Azerdo, J., Visser, J., & Oliveira, R. (1999). Exopolymers in bacterial adhesion: interpretation in terms of DLVO and XDLVO theories. Colloids and Surfaces B, 14, 141–148.

    Article  Google Scholar 

  • Bales, R. C., Gerba, C. P., Grondrn, G. H., & Jensen, S. L. (1989). Bacteriophase transport in sandy soil and fractured tuff. Applied and Environmental Microbiology, 55, 2061–2067.

    Google Scholar 

  • Bales, R. C., Hinkle, S. R., & Kroeger, T. W. (1991). Bacterophase adsorption during transport through porous media: chemical perturbations and reversibility. Environmental Science & Technology, 25, 2088–2095.

    Article  CAS  Google Scholar 

  • Bales, R. C., Li, S., Maguire, K. M., Yahya, M. T., & Gerba, C. P. (1993). Ms-2 and poliovirus transport in porous media: hydrophobic effects and chemical perturbations. Water Resources Research, 29, 957–963.

    Article  Google Scholar 

  • Baygents, J. D., Glynn, J. R., Albinger, O., Biesemeyer, B. K., Ogden, K. L., & Arnold, R. G. (1998). Variation of surface charge density in monoclonal bacterial populations: implications for transport through porous media. Environmental Science & Technology, 32(11), 1596–1603.

    Article  CAS  Google Scholar 

  • Benenson, A. S. (1995). Control of communicable diseases manual (16th ed.). Washington: American Public Health Association.

    Google Scholar 

  • Bergendahl, J., & Grasso, D. (1999). Prediction of colloidal detachment in a model porous media: thermodynamics. AIChE Journal, 45, 475–484.

    Article  CAS  Google Scholar 

  • Bhattacharjee, S., Ryan, J. N., & Elimelech, M. (2002). Virus transport in physically and geochemically heterogeneous subsurface porous media. Journal of Contaminant Hydrology, 57, 161–187.

    Article  CAS  Google Scholar 

  • Bitton, G., & Gerba, C. P. (1984). Groundwater pollution microbiology: the emerging issue. New York: Wiley.

    Google Scholar 

  • Bradford, S. A., Simunek, M., Bellahar, M. T., Van, G., & Yates, S. R. (2003). Modelling colloid attachment, straining and exclusion in saturated porous media. Environmental Science & Technology, 37, 2242–2250.

    Article  CAS  Google Scholar 

  • Bradford, S. A., Simunek, T., Bettahar, M., Tadassa, Y. F., van Genuchten, M. T., & Yates, S. R. (2005). Straining of colloids at textural interface. Water Resources Research, 41(W10404), 1–17. doi:10.1029/2004WR003675.

    Google Scholar 

  • Bradford, S. A., Simunik, J., & Walker, S. L. (2006). Transport and straining of E. coli O157:H7 in saturated porous media. Water Resources Research, 42(W12S12), 1–12. doi:10.1029/2005WR004805.

    Google Scholar 

  • Bradford, S. A., Torkzaban, S., & Walker, S. L. (2007). Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Research, 41, 3012–3024.

    Article  CAS  Google Scholar 

  • Bradford, S. A., Yates, S. R., Bettahar, M., & Simunek, J. (2002). Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resources Research, 38, 1327.

    Article  Google Scholar 

  • Bruens, M. R., Kapil, S., & Oehme, F. W. (2000). Pseudomonas picleettic: a common soil and groundwater aerobic bacteria with pathogenic and biodegradation properties. Ecotoxicology and Environmental Safety, 47(2), 105–111.

    Article  CAS  Google Scholar 

  • Camesano, T. A., & Logan, B. E. (2000). Probing bacterial electrostatic interactions using atomic force microscopy. Environmental Science & Technology, 34(16), 3354–3362.

    Article  CAS  Google Scholar 

  • Canter, L., & Knox, R. (1984). Evaluation of septic tank system effects on groundwater quality. EPA project Summary, EPA-600/S2-84-107. Washington: U.S. Environmental Protection Agency.

    Google Scholar 

  • Chen, L., Sabatini, D. A., & Kibbey, T. C. G. (2008). Role of the air-water interface in the retention of TiO2 nanoparticles in porous media during primary drainage. Environmental Science and Technology, 42, 1916–1921.

    Article  CAS  Google Scholar 

  • Cherrey, K. D., Flury, M., & Harsh, J. B. (2003). Nitrate and colloid transport through coarse Hanford sediments under steady state variably saturated flow. Water Resources Research, 39, 1165. doi:10.1029/2002WR001944.

    Article  CAS  Google Scholar 

  • Chet, I., & Mitchell, R. (1976). Ecological aspects of microbial chemotacic behaviour. Annual Review of Microbiology, 30, 221–239.

    Article  CAS  Google Scholar 

  • Chin, G., & Flurry, M. (2005). Retention of mineral colloids in unsaturated porous media as related to their surface properties. Colloids and Surfaces A, 256, 207–216.

    Article  CAS  Google Scholar 

  • Chrysikopoulos, C. V., & Sim, Y. (1996). One-dimentional virus transport in homogeneous porous media with time-dependent distribution coefficient. Journal of Hydrology, 185, 199–219.

    Article  Google Scholar 

  • Chu, Y., Jin, Y., Flurry, M., & Yates, M. V. (2001). Mechanisms of virus removal during transport in unsaturated porous media. Water Resources Research, 37, 253–263.

    Article  Google Scholar 

  • Chu, Y., Jin, Y., & Yates, M. V. (2000). Virus transport through saturated sand columns as affected by different buffer solutions. Journal of Environmental Quality, 29, 1103–1110.

    Article  CAS  Google Scholar 

  • Corapcioglu, M. Y., & Haridas, A. (1984). Transport and fate of microorganisms in porous media: a theoretical investigation. Journal of Hydrology, 72, 149–169.

    Article  Google Scholar 

  • Corapcioglu, M. Y., & Haridas, A. (1985). Microbial transport in soils and groundwater: a numerical model. Advances in Water Resources, 8, 188–200.

    Article  Google Scholar 

  • Crist, J. T., McCarthy, J. F., Zevi, Y., Baveye, P., Throop, J. A., & Steenhuis, T. S. (2004). Pore-scale visualization of colloid transport and retention in partially saturated porous media. Vadose Zone Journal, 3, 444–450.

    CAS  Google Scholar 

  • Crist, J. T., Zevi, Y., McCarthy, J. F., Throop, J. A., & Steenhuis, T. S. (2005). Transport and retention mechanisms of colloid in partially saturated porous media. Vadose Zone Journal, 4, 184–195.

    CAS  Google Scholar 

  • Daniels, S. L. (1980). Mechanisms involved in sorption of microorganisms to solid surface. In G. Bitton & K. C. Marshall (Eds.), Adsorption of microorganisms to surfaces. New York: Wiley.

    Google Scholar 

  • Dawson, M. P., Humphrey, B. A., & Marshall, K. C. (1981). Adhesion: a tactic in the survival strategy of a marine vibrio during starvation. Current Microbiology, 6, 195–199.

    Article  Google Scholar 

  • de Marsily, G. (1986). Quantitative hydrogeology. San Diego (CA): Academic.

    Google Scholar 

  • Demenico, P. A., & Schwartz, F. W. (1990). Physical and chemical hydrology. New York: Wiley.

    Google Scholar 

  • Duboise, S. M., Moore, B. E., & Sagik, B. P. (1976). Poliovirus survival and movement in a sandy forest soil. Applied and Environmental Microbiology, 31(4), 536–543.

    CAS  Google Scholar 

  • Ducker, W. A., Xu, Z., & Israelachvili, J. N. (1994). Measurement of hydrophobic and DLVO forces in bubble-surface interactions in aqueous solutions. Langmuir, 10, 3279–3289.

    Article  CAS  Google Scholar 

  • Elimelech, M., & Ryan, J. N. (2002). The role of mineral colloids in the facilitated transport of contaminants in saturated porous media. In interactions between soil particles and microorganisms: impact on the terrestrial ecosystem. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems (pp. 495–548). Chichester: Wiley.

  • Fattom, A., & Shilo, M. (1984). Phormidium J-1 bioflocculant: production and activity. Archives of Microbiology, 139, 421–426.

    Article  CAS  Google Scholar 

  • Fetter, C. W. (1999). Contaminant hydrology (2nd ed.). New Jersey: Prentice-Hall.

    Google Scholar 

  • Fontes, D. E., Mills, A. L., Hornberger, G. M., & Herman, J. S. (1991). Physical and chemical factors influencing transport of microorganisms through porous media. Applied and Environmental Microbiology, 57, 2473–2481.

    CAS  Google Scholar 

  • Ford, R.-M., & Lauffenburger, D. A. (1991). Analysis of chemotactic bacterial distribution in population migration assays using a mathematical model applicable to steep or shallow attractant gradients. Bulletin of Mathematical Biology, 53, 721–749.

    CAS  Google Scholar 

  • Ford, R. M., Phillips, B. R., Quinn, J. A., & Douglas, A. L. (1991). Measurement of bacterial random motility and chemotaxis coefficients: 1. Stopped-flow diffusion chamber assay. Biotechnology and Bioengineering, 37, 647–660.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. New York: Prentice-Hall.

    Google Scholar 

  • Gamerdinger, A. P., & Kaplan, D. I. (2001). Physical and chemical determinants of colloid transport and deposition in water-unsaturated sand and Yucca mountain tuff material. Environmental Science & Technology, 35, 2497–2504.

    Article  CAS  Google Scholar 

  • Gannen, J. T., Manital, V. B., & Alexander, M. (1991). Relationship between cell surface properties and transport of bacteria through soil. Applied and Environmental Microbiology, 57, 190–193.

    Google Scholar 

  • Gao, B., Saiers, J. E., & Ryan, J. N. (2006). Pore-scale mechanisms of colloid deposition and mobilization during steady and transient flow through unsaturated granular media. Water Resources Research, 42, W01410. doi:10.1029/2005WR004233.

    Article  Google Scholar 

  • Gao, B., Steenhuis, T. S., Zevi, Y., Morales, V. L., et al. (2008). Capillary retention of colloids in unsaturated porous media. Water Resources Research, 44, W04504. doi:10.1029/2006WR005332.

    Article  Google Scholar 

  • Gerba, C. P., & Bitton, G. (1984). Microbial pollutants: their survival and transport pattern to groundwater. In G. Bitton & C. P. Gerba (Eds.), Groundwater Pollution Microbiology. New York: Wiley Interscience.

    Google Scholar 

  • Gerba, C. P., & Goyal, S. M. (1985). Pathogen removal from wastewater during groundwater recharges artificial recharge of groundwater. Boston: Butterworth Publishers.

    Google Scholar 

  • Ghiorse, W. C., & Wilson, J. T. (1988). Microbial ecology of the terrestrial subsurface. Advances in Applied Microbiology, 33, 107–172.

    Article  CAS  Google Scholar 

  • Gibert, O., Ferguson, A. S., Kalin, R. M., Doherty, R., Dickson, K. W., McGeough, K. L., et al. (2007). Performance of a sequential reactive barrier for bioremediation of coal tar contaminated groundwater. Environmental Science and Technology, 41, 6795–6801.

    Article  CAS  Google Scholar 

  • Gilbert, P., & Brown, M. R. W. (1995). Phenotypic plasticity and mechanisms of protection of bacterial biofilms from Antimicrobial agents. In H. E. Lappin Scott & J. W. Costerton (Eds.), Microbial biofilms (pp. 118–132). Cambridge: Cambridge University Press.

    Google Scholar 

  • Gilbert, P., Evans, D. J., Evans, E., Duguid, I. G., & Brown, M. R. W. (1991). Surface characteristics and adhesion of Escherichia coli. Journal of Applied Biotechnology, 71, 72–77.

    CAS  Google Scholar 

  • Ginn, T. R., Wood, B. D., Nelson, K. E., Scheibe, T. D., Murphy, E. M., & Clement, T. P. (2002). Processes in microbial transport in the natural subsurface. Advances in Water Resources, 25(8–12), 1017–1042.

    Article  CAS  Google Scholar 

  • Goyal, S. M., Amundson, D. A., Robinson, R. A., & Gerba, C. P. (1989). Viruses and drug resistant bacteria in groundwater of southestern Minnesota. Journal of the Minnesota Academy of Science, 55(1), 58–62.

    Google Scholar 

  • Grabinski, K. J. (2007). Pathogen transport and capture in a porous media biofilm reactor. Master of Science Thesis. Bozeman, Montana: Montana State University.

    Google Scholar 

  • Gross, M., Cramton, S., Gotz, F., & Peschel, A. (2001). Key role of teichoic acid net charge in staphlococces aureus colonization of artificial surfaces. Infection and Immunity, 69, 3423–3426.

    Article  CAS  Google Scholar 

  • Gschwend, P. M., & Reynolds, M. D. (1987). Monodisperse ferrous phosphate colloids in an anoxic groundwater plume. Journal of Contaminant Hydrology, 1, 309–327.

    Article  CAS  Google Scholar 

  • Guan, H., Makuch, D. S., Schaffer, S., & Pillai, S. D. (2003). The effect of critical pH on virus fate and treatment in saturated porous media. Groundwater, 41, 701–708.

    CAS  Google Scholar 

  • Harvey, R. W. (1997). Microorganisms as tracers in groundwater injection and recovery experiments: a review. FEMS Microbiology Reviews, 20, 461–472.

    Article  CAS  Google Scholar 

  • Herb Ward, C (2005). Transport and survival of viruses in the subsurface-processes, experiments and simulation models, Remediation Summer (pp. 23–48). Wiley Interscience. doi:10.1002/rem.20048.

  • Hornberger, G. M., Mills, A. L., & Herman, J. S. (1992). Bacterial transport in porous media: evaluation of a model using laboratory observations. Water Resources Research, 28, 915–938.

    Article  Google Scholar 

  • Huysman, F., & Verstraete, W. (1993). Effect of cell-surface characteristics on the adhesion of bacteria to soil particles. Biology and Fertility of Soils, 16, 21–26.

    Article  Google Scholar 

  • Jamieson, R. C., Gordon, R. J., Sharples, K. E., Stratton, G. W., & Madani, A. (2002). Movement and persistence of fecal bacteria in agricultural soils and subsurface drainage water: a review. Canadian Biosystems Engineering, 44, 1.1–1.9.

    Google Scholar 

  • Jeremy, A. R., Sharon, W. L., & Elimelech, M. (2004). Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environmental Science and Technology, 38, 1777–1785.

    Article  CAS  Google Scholar 

  • Jewett, D. G., Logan, B. E., Arnold, R. G., & Bales, R. C. (1999). Transport od pseudomonous fluorescens strain P17 through quartz sand columns as a function of water content. Journal of Contaminant Hydrology, 36, 73–89.

    Article  CAS  Google Scholar 

  • Jin, Y., Yates, M. V., Thompson, S. S., & Jury, W. A. (1997). Sorption of viruses during flow through saturated sand columns. Environmental Science & Technology, 31, 548–555.

    Article  CAS  Google Scholar 

  • John, D. E., & Rose, J. B. (2005). Review of factors affecting microbial survival in groundwater. Environmental Science & Technology, 39, 7345–7356.

    Article  CAS  Google Scholar 

  • Keller, A. A., & Auset, M. (2007). A review of visualization techniques of biocolloid transport processes at the pore scale under saturated and unsaturated conditions. Advances in Water Resources, 30, 1392–1407.

    Article  Google Scholar 

  • Kim, M.-K., Kim, S.-B., & Park, S.-J. (2008). Bacteria transport in an unsaturated porous media: incorporation of air-water interface area model into transport modelling. Hydrological Processes, 22, 2370–2376.

    Article  Google Scholar 

  • Kinoshita, T., Bales, R. C., Yahya, M. T., & Gerba, C. P. (1993). Bacteria transport in a porous medium: retention of bacillus and pseudomonas on silica surface. Water Research, 27, 1295–1301.

    Article  Google Scholar 

  • Kjelleberg, S., & Hermansson, M. (1984). Starvation induced effects on bacterial surface characterization. Applied and Environmental Microbiology, 48, 497–503.

    CAS  Google Scholar 

  • Kramer, M. H., Herwaldt, B. L., Craun, G. P., Calderon, R. L., & Juranek, D. D. (1996). Surveillance for waterborne-disease outbreaks—United states, 1993–1994. Morbidity and Mortality Weekly Report, 45(SS-1), 1–33.

    CAS  Google Scholar 

  • Krekeler, C., Ziehr, H., & Klein, J. (1991). Influence of physicochemical bacterial surface properties on adsorption to inorganic porous supports. Applied Microbiology and Biotechnology, 35(4), 484–490.

    Article  CAS  Google Scholar 

  • Lance, J. C., & Gerba, C. P. (1984). Virus movement in soil during saturated and unsaturated flow. Applied and Environmental Microbiology, 47(2), 335–337.

    CAS  Google Scholar 

  • Lawrence, J. R., & Hendry, M. J. (1996). Transport of bacteria through geologic media. Canadian Journal of Microbiology, 42, 410–422.

    Article  CAS  Google Scholar 

  • Lazouskaya, V., & Jin, Y. (2006). Interfacial interactions and colloid retention under steady flows in a capillary channel. Journal of Colloid and Interface Science, 303, 171–184.

    Article  CAS  Google Scholar 

  • Lazouskaya, V., & Jin, Y. (2008). Colloid retention at air-water interface in a capillary channel. Colloids and Surfaces A, 325, 141–151.

    Article  CAS  Google Scholar 

  • Logan, D. (2001). Transport modelling in hydrogeochemical systems. New York: Springer.

    Google Scholar 

  • Macler, B. A., & Merkle, J. C. (2000). Current knowledge on groundwater microbial pathogens and their control. Hydrogeology Journal, 8(1), 29–40.

    Article  Google Scholar 

  • Martinez-Martinez, L., Pascual, A., & Perea, E. J. (1991). Kinetics of adherence of mucoid and non mucoid Pseudomonas aeruginosa to plastic catheters. Journal of Medical Microbiology, 34, 7–12.

    Article  CAS  Google Scholar 

  • McCarthy, J. F., & McKay, L. D. (2004). Colloid transport in the subsurface: past, present and future challenges. Vadose Zone Journal, 3, 326–337.

    CAS  Google Scholar 

  • McCarthy, J., & Zachara, J. (1989). Subsurface transport of contaminants. Environmental Science & Technology, 23, 496–502.

    CAS  Google Scholar 

  • McDowell-Boyer, L. M., Hunt, J. R., & Sitar, N. (1986). Particle transport through porous media. Water Resources Research, 22, 1901–1921.

    Article  Google Scholar 

  • McEldowney, S., & Fletcher, M. (1986). Adhesion of bacteria from mixed cell suspension to solid surfaces. Archives of Microbiology, 148(1), 57–62.

    Article  Google Scholar 

  • McKay, L. D., Cherry, J. A., Bales, R. C., Moyasar, Y. T., & Gerba, C. P. (1993). Field example of bacteriophase as tracers of fracture flow. Environmental Science & Technology, 27, 1075–1079.

    Article  CAS  Google Scholar 

  • Mercer, J. R., Ford, R. M., Stitz, J. L., & Bradbeer, C. (1993). Growth rate effects on fundamental transport properties of bacterial populations. Biotechnology and Bioengineering, 42, 1277–1286.

    Article  CAS  Google Scholar 

  • Mesibov, R., Ordal, G. W., & Adler, J. (1973). The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over the range. The Journal of General Physiology, 62, 203–223.

    Article  CAS  Google Scholar 

  • Meyer, E. E., Rosenberg, K. J., & Israelachvile, J. (2006). Recent progress in understanding hydrophobic interactions. Proceedings of the National Academy of Sciences of the United States of America, 103(43), 15739–15746.

    Article  CAS  Google Scholar 

  • Molozhavaya, E. I., & Chugunikhina, N. V. (1979). Forecasting groundwater microbial self-purification. Gigiena i Sanitariâ, 8, 23–27.

    Google Scholar 

  • Morales, V. L., Gao, B., & Steenhuis, T. (2009). Grain surface-roughness effects on colloidal retention in the vadose zone. Vadose Zone Journal, 8, 11–20.

    Article  CAS  Google Scholar 

  • Morris, B. L., & Foster, S. S. D. (2000). Cryptos’ poridium contamination hazard assessment and risk management for british groundwater sources. Water Science and Technology, 41(7), 67–77.

    CAS  Google Scholar 

  • Mozes, N., Marchal, F., Hermesse, M. P., Van Haecht, J. L., Peuliaux, L., & Leonard, A. J. (1987). Immobilization of microorganisms by adhesion interplay of electrostatic and nonelectrostatic interactions. Biotechnology and Bioengineering, 30, 439–450.

    Article  CAS  Google Scholar 

  • Murphy, E. M., & Ginn, T. R. (2000). Modeling microbial processes in porous media. Hydrogeology Journal, 8, 142–158.

    Article  Google Scholar 

  • Murrey, J. P., & Parks, G. A. (1980). Polivirus adsorption on oxide surface. In M. C. Kavanaugh & J. O. Lockie (Eds.), Particulates in water. Characterization, fate effects and removal (pp. 97–133). Washington DC: American Chemical Society.

    Chapter  Google Scholar 

  • Nalaskowski, J., Nguyen, A., Hupka, J., & Miller, J. (2002). Study of particle-bubble interaction using atomic force microscopy-current possibilities and challenges. Physicochemical Problems of Mineral Processing, 36, 253–272.

    CAS  Google Scholar 

  • Nevecherya, I. K., Shestakov, V. M., Mazaev, V. T., & Shlepnina, T. G. (2005). Survival rate of pathogenic bacteria and viruses in groundwater. Water Resources, 32(2), 209–214.

    Article  CAS  Google Scholar 

  • Nola, M., Njine, T., Sikati, V. F., & Djuikom, E. (2001). Distribution of pseudomonas aeruginosa and aeromonas hydrophila in groundwater in equatorial zone in Camerun and relationship with some environmental chemical factors. Rev Sci Eau/J Water Sci, 14(1), 35–53.

    CAS  Google Scholar 

  • Nyham, J. W., Brennon, B. J., Abeele, M. L., Wheeler, W. D., et al. (1985). Distribution of plutonium and americium beneath a 33 year old liquid waste disposal site. Journal of Environmental Quality, 14, 501–509.

    Article  Google Scholar 

  • Oettel, M., & Dietrich, S. (2008). Colloidal interactions at fluid interfaces. Langmuir, 24, 1425–1441.

    Article  CAS  Google Scholar 

  • Olsson, T., & Westergren, G. (1982). Hydrophobic properties of oral streptococci. FEMS Microbiology Letters, 15, 319–323.

    Article  Google Scholar 

  • Pang, L., Close, M., Goltz, M., Sinton, L., & Davies, H. (2003). Estimation of septic tank setback distances based on transport of E. coli and F-RNA phases. Environment International, 29, 907–921.

    Article  CAS  Google Scholar 

  • Pang, L., Close, M., Noonan, M., Flintoft, M., & denBrink, P. V. (2002). DIAS report. Plant production no, 80, 209–214.

    Google Scholar 

  • Pekdeger, A., Mathess, G. & Schroter, J. 1985. Hydrogeology in the service of man, memoires of the 18th congress of the international association of hydrogeologists, Cambridge

  • Penrod, S. L., Olsen, T. M., & Grant, S. B. (1996). Deposition kinetics of two viruses in packed bed of quartz granular media. Langmuir, 12, 5576–5587.

    Article  CAS  Google Scholar 

  • Peterson, T., & Ward, R. C. (1989). Development of a bacterial transport model for coarse soils. Water Resour Bulletin, 25, 349–357.

    Google Scholar 

  • Poortinga, A. T., Bos, R., Norde W., & Busscher, H. J. (2002). Electric double layer interactions in bacterial adhesion to surfaces. Surface Science Reports, 47, 3–32.

    Article  Google Scholar 

  • Poortinga, A. T., Smit, J., vander Mei, H. C., & Busscher, H. J. (2001). Biotechnology and Bioengineering, 76(4), 395–399.

    Article  CAS  Google Scholar 

  • Powelson, D. K., & Gerba, C. P. (1994). Viral removal from sewage effluents during saturated and unsaturated flow through soil columns. Water Research, 28, 2175–2181.

    Article  Google Scholar 

  • Powelson, D. K., & Mills, A. L. (1996). Bacterial enrichment at the gas-water interface of a laboratory apparatus. Applied and Environmental Microbiology, 62, 2593–2597.

    CAS  Google Scholar 

  • Powelson, D. K., & Mills, A. L. (2001). Transport of Escherichia coli in sand columns with constant and changing water contents. Journal of Environmental Quality, 30, 238–245.

    Article  CAS  Google Scholar 

  • Powelson, D. K., Simpson, J. R., & Gerba, C. P. (1990). Virus transport and survival in saturated and unsaturated flow through soil columns. Journal of Environmental Quality, 19, 396–401.

    Article  Google Scholar 

  • Quyang, Y., Shinde, D., Mansell, R. S., & Harris, W. (1996). Colloid enhanced transport of chemicals in subsurface environments: a review. Critical Reviews in Environmental Science and Technology, 26, 189–204.

    Article  Google Scholar 

  • Reddy, K. R., Khaleel, R., & Overcash, M. R. (1981). Behavior and transport of microbial pathogen and indicator organisms in soils treated with organic wastes. Journal of Environmental Quality, 10, 255–266.

    Article  Google Scholar 

  • Redman, J. A., Grant, S. B., Olson, T. M., & Estes, M. K. (2001). Pathogen filtration, heterogeneity and potable reuse of wastewater. Environmental Science & Technology, 35(9), 1798–1805.

    Article  CAS  Google Scholar 

  • Redman, J. A., Walker, S. L., & Elimelech, M. (2004). Bacterial adhesion and transport in porous media: Role of the secondary energy minimum. Environmental Science & Technology, 38, 1777–1785.

    Article  CAS  Google Scholar 

  • Reynolds, P. J., Sharma, P., Jenneman, G. E., & McInerney, M. J. (1989). Mechanisms of microbial movement in subsurface materials. Applied and Environmental Microbiology, 55(9), 2280–2286.

    CAS  Google Scholar 

  • Rose, J. B., Vasconcelos, G. J., Harris, S. I., Klonicki, P. T., Sturbaum, G. D., & Moulton-Hancock, C. (2000). Giardea and cryptosporidium occurrence in groundwater. Journal of the American Water Works Association, 92(9), 117–123.

    Google Scholar 

  • Rosers, B., & Logan, B. E. (2000). Bacterial transport in NAPL-contaminated porous media. Journal of Environmental Engineering, 126(7), 657–666.

    Article  Google Scholar 

  • Ryan, J. N., & Elimelech, M. (1996). Colloidal mobilization and transport in groundwater. Colloid Surf A, 107, 1–56.

    Article  CAS  Google Scholar 

  • Ryan, J. N., Elimelech, M., Arid, R. A., Harvey, R. W., & Johnson, P. R. (1999). Bacteriophase PRD1 and silica colloid transport and recovery in an iron oxide coated sand aquifer. Environmental Science & Technology, 33, 63–73.

    Article  CAS  Google Scholar 

  • Ryan, J. N., & Gschwend, P. M. (1990). Colloid mobilization in two Atlantic coastal plain aquifers: Field studies. Water Resources Research, 26, 307–322.

    Article  CAS  Google Scholar 

  • Saiers, J. E., & Lenhart, J. J. (2003). Colloid mobilization and transport within unsaturated porous media under transient flow conditions. Water Resources Research, 39, 1019. doi:10.1029/2002WR001370.

    Article  Google Scholar 

  • Santoro, T., & Stotzky, G. (1968). Sorption between microorganisms and clay minerals as determined by electrical sensing zone particle analyser. Canadian Journal of Microbiology, 14(4), 299–307.

    Article  CAS  Google Scholar 

  • Scandura, J. E., & Sobsey, M. D. (1997). Viral and bacterial contamination of groundwater from on-site sewage pre-treatment systems. Water Science and Technology, 38(12), 141–146.

    Article  Google Scholar 

  • Schafer, A., Harman, H., & Zehnder, A. J. B. (1998). Bacterial accumulation at the air-water interface. Environmental Science & Technology, 32, 3704–3712.

    Article  Google Scholar 

  • Scheibe, T. D., & Wood, B. D. (2003). A particle-based model of size or anion exclusion with application to microbial transport in porous media. Water Resources Research, 39(4), 1080. doi:10.1029/2001WR.

    Article  Google Scholar 

  • Schijven, J. F., & Hassanizadeh, S. M. (2001). Virus removal by soil passage at field scale and groundwater protection of sandy aquifers. Second world water congress: environmental monitoring, contaminants and pathogens. Water Science and Technology, 46(3), 123–129.

    Google Scholar 

  • Sen, T. K., Das, D., Khilar, K. C., & Suraishkumar, G. K. (2005). Bacterial transport in porous media: new aspects of the mathematical model. Colloids Surf A, 260, 53–62.

    Article  CAS  Google Scholar 

  • Sen, T. K., & Khilar, K. C. (2006). Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Advances in Colloid and Interface Science, 119, 71–96.

    Article  CAS  Google Scholar 

  • Sen, T. K., & Khilar, K. C. (2009). Mobile subsurface colloids and colloid-mediated transport of contaminants in subsurface soil. In K. S. Birdi (Ed.), Handbook of surface and colloid chemistry (3rd ed., pp. 107–130). CRC Press: London.pp.

    Google Scholar 

  • Sen, T. K., Mahajan, S. P., & Khilar, K. C. (2002). Colloid-associated contaminant transport in porous media: Experimental study. AIChE Journal, 48(10), 2366–2375.

    Article  CAS  Google Scholar 

  • Sen, T. K., Shanbag, S., & Khilar, K. C. (2004). Subsurface colloids in groundwater contamination: a mathematical model. Colloid Surf A, 232, 29–38.

    Article  CAS  Google Scholar 

  • Shang, J., Flury, M., Chin, G., & Zhuang, J. (2008). Impact of flow rate, water content and capillary forces on insitu colloid mobilization during infiltration in unsaturated sediments. Water Resources Research, 44(W06411), 137–148. doi:10.1029/2007WR006516.

    Google Scholar 

  • Shang, J., Flury, M., & Deng, Y. (2009). Force measurements between particles and the air-water interface: implications for particle mobilization in unsaturated porous media. Water Resources Research, 45(W06420), 1–14. doi:10.1029/2008WR007384.

    Google Scholar 

  • Sharma, M. M., Chamoun, H., Sita Rama Sarma, D. S. H., & Schechter, R. S. (1992). Factors controlling the hydrodynamic detachment of particles from surfaces. Journal of Colloid and Interface Science, 149, 121–134.

    Article  CAS  Google Scholar 

  • Sharma, P., Flury, M., & Zhou, J. (2008). Detachment of colloid from a solid surface by a moving air-water interface. Journal of Colloid and Interface Science, 326, 143–150.

    Article  CAS  Google Scholar 

  • Sharma, P. K., & McInerney, M. J. (1994). Effect of grain size on bacterial penetration and reproduction and metabolic activity in porous glass bead chambers. Applied and Environmental Microbiology, 60, 1481–1486.

    CAS  Google Scholar 

  • Shaw, D. J. (1998). Colloid and Surface Chemistry (4th ed.). Oxford: Butterworth Heinemann.

    Google Scholar 

  • Sing, R., & Olson, M. S. (2008). Application of bacterial swimming and chemotaxis for enhanced bioremediation. Emerging Environmental Technologies (pp. 149–172). Netherlands: Springer.

    Google Scholar 

  • Sirivithayapakorn, S., & Keller, A. (2003). Transport of colloids in unsaturated porous media: a pore-scale observation of processes during the dissolution of air-water interface. Water Resources Research, 39, 1346. doi:10.1029/2003WR002487.

    Article  Google Scholar 

  • Smith, M. S., Thomas, G. W., White, R. E., & Ritonga, D. (1985). Transport of E. coli through intact and disturbed columns. Journal of Environmental Quality, 14, 87–91.

    Article  Google Scholar 

  • Stenstrom, T. A. (1989). Bacterial hydrophobicity, overall parameters for the measurement of adhesion potential to soil particles. Applied and Environmental Microbiology, 55, 142–147.

    CAS  Google Scholar 

  • Stevik, T. K., Aa, K., Ausland, G., & Hanssen, J. F. (2004). Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Research, 38, 1355–1367.

    Article  CAS  Google Scholar 

  • Surampalli, R. Y., Lin, K. L., Banerji, S. K., & Sievers, D. M. (1997). Impact of long term land application of biosolids on groundwater quality and surface soils. Journal of Environmental Systems, 26(3), 305–324.

    Google Scholar 

  • Tate, R. L. (1978). Cultural and environmental factors affecting the longevity of Escherichia coli in histosols. Applied and Environmental Microbiology, 35, 925–929.

    Google Scholar 

  • Taylor, R., Cronin, A., Pedley, S., Barker, J., & Atkinson, T. (2004). The implications of groundwater velocity variations on microbial transport and wellhead protection-review of field evidence. FEMS Microbialogy Ecology, 49(1), 17–26.

    Article  CAS  Google Scholar 

  • Taylor, S. W., Milly, P. C., & Jaffe, P. R. (1990). Biofilm growth and related changes in the physical properties of a porous medium. Water Resources Research, 26, 2161–2170.

    Article  Google Scholar 

  • Thompson, S. S., Flury, M., Yates, M. V., & Jury, W. A. (1998). Role of the air-water-solid interface in bacteriophage sorption experiments. Applied and Environmental Microbiology, 64, 304–309.

    CAS  Google Scholar 

  • Tindall, M., Maini, P., Porter, J., & Armitage, J. P. (2008). Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations. Bulletin of Mathematical Biology, 70, 1570–1607.

    Article  CAS  Google Scholar 

  • Torkzaban, S., Bradford, S. A., van Genuchten, M. T., & Walker, S. L. (2008). Colloid transport in unsaturated porous media: The role of water content and ionic strength on particle straining. Journal of Contaminant Hydrology, 96, 113–127.

    Article  CAS  Google Scholar 

  • Torkzaban, S., Hassanizadeh, S. M., Schijven, J. F., & de Roda Husman, A. M. (2006). Virus transport in saturated and unsaturated sand columns. Vadose Zone Journal, 5, 877–885.

    Article  Google Scholar 

  • Truesdail, S. E., Lukasik, J., Farrah, S. R., Shah, D. O., & Dickinson, R. B. (1998). Analyses of bacterial deposition on metal oxide-coated sand filter media. Journal of Colloid and Interface Science, 203, 369–378.

    Article  CAS  Google Scholar 

  • Tutenkji, N. (2007). Modeling microbial transport in porous media: Traditional approaches and recent developments. Advances in Water Resources, 30, 1455–1469.

    Article  Google Scholar 

  • Van Loosdrecht, M. C. M., Lyklema, J., Norde, W., & Zehnder, A. J. B. (1989). Bacterial adhesion: a physicochemical approach. Microbial Ecology, 17, 1–15.

    Article  Google Scholar 

  • van Oss, C. J. (1994). Interfacial forces in aqueous media. New York: Marcel Dekker.

    Google Scholar 

  • van Oss, C. J. (2006). Interfacial forces in aqueous media (2nd ed.). Boca Raton: Taylor & Francis.

    Google Scholar 

  • Vigeant, M. A. S., Ford, R. M., Wagner, M., & Tamm, L. K. (2002). Reversible and irreversible adhesion of motile Escherich coli cells analysed by total internal reflection aqueous fluorescence microscopy. Applied and Environmental Microbiology, 68, 2794–2801.

    Article  CAS  Google Scholar 

  • Wan, J., & Tokunaga, T. K. (1997). Film straining of colloids in unsaturated porous media: conceptual model and experimental testing. Environmental Science & Technology, 31, 2413–2420.

    Article  CAS  Google Scholar 

  • Wan, J. M., & Tokunaga, T. K. (2002). Partitioning of clay colloids at air-water interfaces. Journal of Colloid and Interface Science, 247, 54–61.

    Article  CAS  Google Scholar 

  • Wan, J., & Wilson, J. L. (1994). Colloid transport in unsaturated porous media. Water Resources Research, 30, 857–864.

    Article  CAS  Google Scholar 

  • Wang, M., & Ford, R. (2009). Transverse Bacterial migration induced by chemotaxis in a packed column with structured physical heterogeneity. Environmental Science & Technology, 43, 5921–5927.

    Article  CAS  Google Scholar 

  • Williams, D. F., & Berg, J. C. (1992). The aggregation of colloidal particles at the air-water interface. Journal of Colloid and Interface Science, 152, 218–229.

    Article  CAS  Google Scholar 

  • Yao, K. M., Habibian, M. T., & O’Melea, C. R. (1971). Water and waste water filtration. Concepts and applications Environ Sci Technol, 5, 1105–1112.

    CAS  Google Scholar 

  • Yates, M. V., & Gerba, C. P. (1985). Factors controlling the survival of viruses in groundwater. Water Science and Technology, 17, 681–687.

    CAS  Google Scholar 

  • Yates, M. V., Stetzenbach, L. D., Gerba, C. P., & Sinclair, N. A. (1990). The effect of indigenous bacteria on virus survival in groundwater. Journal of Environmental Science and Health. Part A: Environmental Science, 25, 81–100.

    Article  Google Scholar 

  • Yates, M. V., & Yates, S. R. (1988). Modelling microbial fate in the subsurface environment. Critical Reviews in Environmental Control, 17, 307–344.

    Article  Google Scholar 

  • Yoon, R. H., & Mao, L. (1996). Application of extended DLVO theory. Journal of Colloid and Interface Science, 181, 613–626.

    Article  CAS  Google Scholar 

  • Zevi, Y., Dathe, A., McCarthy, J. F., Richards, B. K., & Steenhuis, T. S. (2005). Distribution of colloidal particles onto interface in partially saturated sand. Environmental Science & Technology, 39, 7055–7064.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Kanti Sen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, T.K. Processes in Pathogenic Biocolloidal Contaminants Transport in Saturated and Unsaturated Porous Media: A Review. Water Air Soil Pollut 216, 239–256 (2011). https://doi.org/10.1007/s11270-010-0531-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0531-9

Keywords

Navigation