Skip to main content
Log in

Kinetics of Indigenous Isolated Bacteria used for Ex-Situ Bioremediation of Petroleum Contaminated Soil

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The bioremediation of petroleum contaminated soil was investigated using a laboratory scale aerated reactor. The Indigenous bacteria, Stenotrophomonas multophilia, were isolated from the contaminated sites near to Jordan Petroleum Refinery and used further in the bioremediation experiments. First order kinetic equation has been proven to satisfactorily describe the biodegradation of petroleum contained in soil in the presence of the isolated bacteria. The results also showed that the first order kinetic constants for the different bioreactors vary between 0.041 and 0.0071/day. The overall kinetic constant k′ was determined based on food-to-microorganisms ratio and found to be 0.02/day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbassi, B. E., & Shquirat, W. D. (2005). Ex-situ bioremediation of petroleum contaminated soil using isolated indigenous bacteria. Alexandria Science Exchange, 26(3), 224–229.

    CAS  Google Scholar 

  • Alexander, M. (1999). Biodegradation and Bioremediation. New York: Academic Press.

    Google Scholar 

  • Antizar-Ladislao, B., Lopez-Real, J., & Beck, A. J. (2005). Laboratory studies of the remediation of polycyclic aromatic hydrocarbon contaminated soil by in-vessel composting. Waste Management, 25, 281–289.

    Article  CAS  Google Scholar 

  • Atlas, R. M., & Cerniglia, C. E. (1995). Bioremediation of petroleum pollutants. BioScience, 45(5), 332–338.

    Article  Google Scholar 

  • Barathi, S., & Vasudevan, N. (2001). Utilization of petroleum hydrocarbon by Pseudomonas fluorescens isolated from a petroleum contaminated soil. Environmental International, 26(5), 413–416.

    Article  CAS  Google Scholar 

  • Bock, M., Kampfer, K., & Dott, W. (1994). Isolation and characterization of heterotrophic aerobic bacteria from oil storage caverns in northern Germany. Applied Microbiology and Biotechnology, 42, 463–468.

    Article  CAS  Google Scholar 

  • Bonaventura, C., & Johnson, F. M. (1996). Healthy environment for healthy people: Bioremediation now and tomorrow. Environmental Health Perspective Supplements, 105(1), 5–21.

    Google Scholar 

  • Boonchan, S., Britz, M. L., & Stanley, G. A. (2000). Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Applied and Environmental Microbiology, 66(3), 1007–1019.

    Article  CAS  Google Scholar 

  • Greene, E. A., Kay, J. G., Jaber, K., Stehmeier, G., & Voordouw, G. (2000). Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons. Applied and Environmental Microbiology, 66(12), 5282–5289.

    Article  CAS  Google Scholar 

  • Hutchins, S. R., Sewell, G. W., Kovacs, D. A., & Smith, G. A. (1991). Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions. Environmental Science and Technology, 25, 68–76.

    Article  CAS  Google Scholar 

  • Hwang, E., Namkoong, W., & Park, J. (2001). Recycling of remediated soil for effective composting of diesel-contaminated soil. Compost Science and Utilization, 9(2), 143–149.

    Google Scholar 

  • Kanaly, R. A., Bartha, R., Watanabe, K., & Harayama, S. (2000). Rapid mineralization of benzopyrene by a microbial consortium growing on diesel fuel. Applied and Environmental Microbiology, 66, 4205–4211.

    Article  CAS  Google Scholar 

  • Li, H., Liu, Y. H., Luo, N., Zhang, X. Y., Luan, T. G., Hu, J. M., et al. (2006). Biodegradation of benzene and its derivatives by a psychrotolerant and moderately haloalkaliphilic Planococcus sp. Strain ZD22. Research in Microbiology, 157, 629–636.

    Article  CAS  Google Scholar 

  • Murray, P. R., Baron, E. J., Pfaller, M. A., Tenover, F. C., & Yolken, H. R. (1995). Manual of Clinical Microbiology. Washington D.C.: ASM Press.

    Google Scholar 

  • Reardon, K. F., Mosteller, D. C., Rogers, J. B., DuTeau, N. M., & Kee-Hong, K. (2002). Biodegradation kinetic of aromatic hydrocarbon mixtures by pure and mixed bacterial cultures. Environmental Health Perspectives, 110(12), 1005–1012.

    CAS  Google Scholar 

  • Strauss, J. M., & du Plessis, C. A. (2000). Empirical model for biofiltration of toluene. Journal of Environmental Engineering, 126(7), 644–648.

    Article  CAS  Google Scholar 

  • Williams, D. L., Kriel, K. D., Stewart, G. A., Hulse, R. C., Holsomback, J. E., & Stewart, J. R. (1998). Bioremediation of oil-contaminated soils by stimulating indigenous microbes. Environmental Geosciences, 5(1), 1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassim E. Abbassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbassi, B.E., Shquirat, W.D. Kinetics of Indigenous Isolated Bacteria used for Ex-Situ Bioremediation of Petroleum Contaminated Soil. Water Air Soil Pollut 192, 221–226 (2008). https://doi.org/10.1007/s11270-008-9649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9649-4

Keywords

Navigation