Skip to main content
Log in

Mobilization of Antimony and Arsenic in Soil and Sediment Samples – Evaluation of Different Leaching Procedures

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

This study aims to evaluate the performance of different leaching schemes with respect to the mobilization of antimony and arsenic from polluted samples collected at different sites in Mansfeld District, Germany. Besides the elution by water the leaching by artificial acidic rain and by two different schemes of sequential extraction were employed for estimation of the mobilization of antimony and arsenic. The samples were characterized by X-ray fluorescence analysis for their total concentration of metalloids, metals and main constituents. It was found that both antimony and arsenic show little mobilization with de-ionized water as well as artificial acidic rain in single step batch procedures (≤ 0.13% of the total content). Although the percentage leached is very low, the concentrations in the resulting solutions are of ecotoxicological relevance. BCR procedure indicate a very strong binding of Sb and of As in the samples. Less than 20% of the total content can be leached in sum in all leaching steps, of it most under strongly oxidizing conditions. This scheme seems not suitable for a detailed investigation of possible mobilization processes under environmental conditions for the metalloids under investigation. The four-step extraction procedure by Wenzel et al. gives a more detailed pattern of the binding of antimony and arsenic. This procedure was found to be a suitable scheme for evaluating the possible mobilization processes from the samples contaminated by ore processing waste, especially by change through other ions or under reducing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Becker, A., Köck, W., Friese, K., Schreck, P., Treutler, H.-C., Spettel, B., et al. (2001). Lake Suesser See as a natural sink for heavy metals from copper mining. Journal of Geochemical Exploration, 74, 205–217.

    Article  CAS  Google Scholar 

  • Bermond, A. (2001). Limits of sequential extraction procedures re-examined with emphasis on the role of H+ ion reactivity. Analytica Chimica Acta, 445, 79–88.

    Article  CAS  Google Scholar 

  • Buschmann, J., & Sigg, L. (2004). Antimony (III) binding to humic substances: Influence of pH and type of humic acid. Environmental Science & Technology, 38, 4535–4541.

    Article  CAS  Google Scholar 

  • Council Directive 98/83/EC (1998). Quality of water intended for human consumption. Official Journal of the European Communities L 330/32.

  • Davidson, C. M., Duncan, A. L., Littlejohn, D., Ure, A. M., & Garden, L. M. (1998). A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Analytica Chimica Acta, 363, 45–55.

    Article  CAS  Google Scholar 

  • Davidson, C. M., Thomas, R. P., McVey, S. E., Perala, R., Littlejohn, D., & Ure, A. M. (1994). Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Analytica Chimica Acta, 291, 277–286.

    Article  CAS  Google Scholar 

  • Dhoum, R. T., & Evans, G. J. (1998). Evaluation of uranium and arsenic retention by soil from a low level radioactive waste management site using sequential extraction. Applied Geochemistry, 13, 415–420.

    Article  CAS  Google Scholar 

  • DIN 38414 – S4 (1984). German standards procedure: Determination of the leachability by water; German standards methods for the estimation of water, wastewater and sludge: Sludge and sediments (Group S) DIN 38414 part 4’ 1984 Fachgruppe Wasserchemie in der GDCh, Normausschuss Wasserwesen im DIN (Eds.) VCH, Weinheim.

  • EPA National Primary Drinking Water Standards (2003). http://www.epa.gov/safewater/consumer/pdf/mcl.pdf.

  • Fiedler, H. D. L., Quevauviller, P., Rauret, G., Muntau, H., Ure, A. M., Rubio, R., et al. (1994). Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments. Fresenius’ Journal of Analytical Chemistry, 349, 808–814.

    Article  Google Scholar 

  • Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4, 823–857.

    Article  CAS  Google Scholar 

  • Foerstner, U. (1993). Metal speciation – General concepts and applications. International Journal of Environmental Analytical Chemistry, 51, 5–23.

    CAS  Google Scholar 

  • Gal, J., Hursthouse, A. S., & Cuthbert, S. J. (2006). Chemical availability of arsenic and antimony in industrial soils. Environmental Chemistry Letter, 3, 149–153.

    Article  CAS  Google Scholar 

  • Gebel, T. W., Suchenwirth, R. H. R., Bolten, C., & Dunkelberg, H. H. (1998). Human Biomonitoring of arsenic and antimony in case of an elevated geogenic exposure. Environmental Health Perspectives, 106, 33–41.

    Article  CAS  Google Scholar 

  • Gleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: A review of sequential extraction procedures. TrAC Trends in Analytical Chemistry, 21, 451–467.

    Article  CAS  Google Scholar 

  • Hage, J. L. T., & Mulder, E. (2004). Preliminary assessment of three new European leaching tests. Waste Management, 24, 165–172.

    Article  CAS  Google Scholar 

  • Keon, N. E., Swartz, C. H., Brabander, D. J., Harvey, C., & Hemond, H. F. (2001). Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environmental Science & Technology, 35, 2778–2784.

    Article  CAS  Google Scholar 

  • Lager, T., Hamer, K., & Schulz, H. D. (2005). Mobility of heavy metals in harbour sediments: An environmental aspect for the reuse of contaminated dredged sediments. Environmental Geology, 48, 92–100.

    Article  CAS  Google Scholar 

  • Larner, B. L., Seen, A. J., & Townshend, A. T. (2006). Comparative study of oprimized BCR sequential extraction scheme and acid leaching of elements in the certified reference material NIST 2711. Analytica Chimica Acta, 556, 444–449.

    Article  CAS  Google Scholar 

  • Lintschinger, J., Michalke, B., Schulte-Hostede, S., & Schramel, P. (1998). Studies of speciation of antimony in soils contaminated by industrial activity. International Journal of Environmental Chemistry, 72, 11–25.

    CAS  Google Scholar 

  • Lombi, E., Sletten, R. S., & Wenzel, W. W. (2000). Sequentially extracted arsenic from different size fractions of contaminated soils. Water Air Soil Pollution, 124, 319–332.

    Article  CAS  Google Scholar 

  • Long, X., Miro, M., & Hansen, E. L. (2006). On-line dynamic extraction and automated determination of readily bioavailable hexavalent chromium in solid substrates using micro-sequential injection bead-injection lab-on-valve hyphenated with electrothermal atomic absorption spectrometry. Analyst, 131, 132–140.

    Article  CAS  Google Scholar 

  • Margui, E., Salvado, V., Queralt, I., & Hidalgo, M. (2004). Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes. Analytica Chimica Acta, 524, 151–159.

    Article  CAS  Google Scholar 

  • Meers, E., Du Laing, G., Unamuno, V. G., Lesage, E., Tack, F. M. G., & Verloo, M. G. (2006). Water extractability of trace metals from soils: Some pitfalls. Water Air Soil Pollution, 176, 21–35.

    Article  CAS  Google Scholar 

  • Murciego, A. M., Sanchez, A. G., Gonzalez, M. A., Gil, E. P., Gordillo, C. T., Fernandez, J. C., et al. (2007). Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus Ladanifer and Dittrichia viscosy) from pollutes Sb-mining areas in Extremadura (Spain). Environmental Pollution, 145, 15–21.

    Article  CAS  Google Scholar 

  • Paschke, A., Morgenstern, P., & Wennrich, R. (1999). Comparison of 24 h and long-term pH(stat) leaching tests for heavy metal mobilisation from solid matrices. Acta Hydrochimica et Hydrobiologica, 27, 223–229.

    Article  CAS  Google Scholar 

  • Perez, G., & Valiente, M. (2005). Determination of pollution trends in an abandoned mining site by application of a multivariate statistical analysis to heavy metals fractionation using SM&T-SES. Journal of Environmental Monitoring, 7, 29–36.

    Article  CAS  Google Scholar 

  • Quevaullier, P., Rauret, G., Lopez-Sanchez, F. J., Rubio, R., Ure, A. M., & Muntau, H. (1997). Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Science of the Total Environment, 205, 223–234.

    Article  Google Scholar 

  • Schreck, P., Schubert, M., Freyer, K., Treutler, H.-C., & Weiss, H. (2005). Multi-metal contaminated stream sediment in the Mansfeld mining district: Metal provenance and source detection. Geochemistry: Exploration Environment Analysis, 5, 51–57.

    CAS  Google Scholar 

  • Schreiber, M., Otto, M., Fedotov, P. S., & Wennrich, R. (2005). Dynamic studies on the mobility of trace elements in soil and sediment samples influenced by dumping of residues of the flood in the Mulde River region in 2002. Chemosphere, 61, 107–115.

    Article  CAS  Google Scholar 

  • Seguin, V., Gagnon, C., & Courchesne, F. (2004). Changes in water extractable metals, pH and organic carbon concentrations at the soil-root interface of forested soils. Plant Soil, 260, 1–17.

    Article  CAS  Google Scholar 

  • Smichowski, P., Polla, G., & Gomez, D. (2005). Metal fractionation of atmospheric aerosols via sequential chemical extraction: A review. Analytical and Bioanalytical Chemistry, 381, 302–316.

    Article  CAS  Google Scholar 

  • Templeton, D. M., Ariese, F., Cornelis, R., Danielson, L.-G., Munau, H., van Leeuwen, H. P., et al. (2000). Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects and methodological approaches. (IUPAC Recommendations 2000). Pure and Applied Chemistry, 72, 1453–1470.

    CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Thomas, R. P., Ure, A. M., Davidson, C. M., Littlejohn, D., Rauret, G., Rubio, R., et al. (1994). Three-stage sequential extraction procedure for the determination of metals in river sediments. Analytica Chimica Acta, 286, 423–429.

    Article  CAS  Google Scholar 

  • Ure, A. M., Quevaullier, Ph., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments – An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission the European Communities. International Journal of Environmental Analytical Chemistry, 51, 135–151.

    CAS  Google Scholar 

  • Van Herreweghe, S., Swennen, R., Vandercasteele, C., & Cappuyns, V. (2003). Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environmental Pollution, 122, 323–342.

    Article  Google Scholar 

  • Wennrich, R., Mattusch, J., Morgenstern, P., Freyer, K., Treutler, H.-C., Stärk, H.-J., et al. (2004). Characterization of sediments in an abandoned mining area; A case study of Mansfeld region, Germany. Environmental Geology, 45, 818–833.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436, 309–323.

    Article  CAS  Google Scholar 

  • Wilson, N. J., Craw, D., & Hunter, K. (2004). Contributions of discharge from a historic antimony mine to metalloids content of river waters, Marlborough, New Zealand. Journal of Geochemical Exploration, 84, 127–139.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Ines Volkmann, Jürgen Steffen, Doris Sonntag and Jutta Froehlich (all UFZ) for the analytical assistance. The Deutsche Bundesstiftung Umwelt DBU (contract No. 2004/703) is greatly appreciated for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Wennrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, K., Daus, B., Morgenstern, P. et al. Mobilization of Antimony and Arsenic in Soil and Sediment Samples – Evaluation of Different Leaching Procedures. Water Air Soil Pollut 183, 427–436 (2007). https://doi.org/10.1007/s11270-007-9391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9391-3

Keywords

Navigation