Skip to main content
Log in

Mercury Concentrations in Lake Sediments – Revisiting the Predictive Power of Catchment Morphometry and Organic Matter Composition

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Lake sediments are a potential source of mercury (Hg) for aquatic biota. Here, we investigated the predictive power of (a) key parameters for lake catchment morphometry and (b) organic matter composition of sediments in an effort to account for observed variations of total (THg) and methyl (MeHg) mercury concentrations in lake sediments. Using regression models we demonstrate that the morphometric parameters lake depth as well as inclination of catchment soils and lake bottoms can significantly predict variations of THg concentrations, but not MeHg, at profundal lake sediments. Although THg and MeHg concentrations in sediments could not be predicted by specific organic matter sources, as elucidated by atomic C/N ratios, our data suggest that wetland-derived total organic carbon (TOC) contained less THg concentrations than TOC derived from mostly forested watersheds. However, TOC concentrations could significantly predict MeHg concentrations and the proportion of methylated Hg at all sediment stations. Finally, from an ecotoxicological point of view, we propose that concentrations of TOC at surface lake sediments, rather than parameters of catchment morphometry, may predict dietary sources of MeHg for benthic consumers and consequently perhaps for organisms at higher trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babiarz, C. L., Hurley, J. P., Benoit, J. M., Shafer, M. M., Andren, A. W. and Webb, D. A.: 1998, ‘Seasonal influences on partitioning and transport of total and methylmercury in rivers from contrasting watersheds’, Biogeochem. 41, 237–257.

    Article  CAS  Google Scholar 

  • Beldowski, J. and Pempkowiak, J.: 2003, ‘Horizontal and vertical variabilities of mercury concentration and speciation in sediments of the Gdansk Basin, Southern Baltic Sea’, Chemosphere 52, 645–654.

    Article  CAS  Google Scholar 

  • Bowles, K. C., Apte, S. C., Maher, W. A. and Bluhdorn, D. R.: 2003, ‘Mercury cycling in Lake Gordon and Lake Pedder, Tasmania (Australia). II: Catchment processes’, Water Air Soil Pollut. 147, 25–38.

    Article  CAS  Google Scholar 

  • Branfireun, B. A., Hilbert, D. and Roulet, N. T.: 1998, ‘Sinks and sources of methylmercury in a boreal catchment’, Biogeochem. 41, 277–291.

    Article  CAS  Google Scholar 

  • Caldwell, C. A., Canavan, C. M. and Bloom, N. S.: 2000, ‘Potential effects of forest fire and storm flow on total mercury and methylmercury in sediments of an arid-lands reservoir’, Sci. Total Environ. 260, 125–133.

    Article  CAS  Google Scholar 

  • Canuel, E. A. and Martens, C. S.: 1993, ‘Seasonal variations in the sources and alteration of organic matter associated with recently-deposited sediments’, Org. Geochem. 20, 563–577.

    Article  CAS  Google Scholar 

  • Courcelles, M.: 1998, ‘Enregistrement sédimentaire des flux récents de métaux lourds (Pb, Hg) et d'isotopes à courte période (210Pb, 137Cs et 228Th) dans un lac sub-arctique à faible vitesse de sédimentation (Lac Jobert, Québec)’ Ph.D. Thesis, Université du Québec à Montréal, 185 pp.

  • D'Arcy, P. and Carignan, R.: 1997, ‘Influence of catchment topography on water chemistry in southeastern Québec Shield lakes’, Can. J. Fish. Aquat. Sci. 54, 2215–2227.

    Article  Google Scholar 

  • Downs, S. G., Macleod, C. L. and Lester, J. N.: 1998, ‘Mercury in precipitation and its relation to bioaccumulation in fish: A literature review’, Water Air Soil Pollut. 108, 149–187.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Blette, V., Yan, C., Schofield, C. L., Munson, R. and Holsapple, J.: 1995, ‘The role of dissolved organic carbon in the chemistry and bioavailability of mercury in remote Adirondack lakes’, Water Air Soil Pollut. 80, 499–508.

    Article  CAS  Google Scholar 

  • Engstrom, D. R., Swain, E. B., Henning, T. A., Brigham, M. E. and Brezonik, P. L.: 1994, ‘Atmospheric mercury deposition to lakes and watersheds’, in L. A. Baker (ed.), Envirionmental Chemistry of Lakes and Reservoirs, American Chemical Society, pp. 33–66.

  • Evans, R. D.: 1986, ‘Sources of mercury contamination in the sediments of small headwater lakes in south-central Ontario, Canada’, Arch. Environ. Contam. Toxicol. 15, 505–512.

    Article  CAS  Google Scholar 

  • Gagnon, C. and Fisher, N. S.: 1997, ‘Bioavailability of sediment-bound methyl and inorganic mercury to a marine bivalve’, Environ. Sci. Technol. 31, 993–998.

    Article  CAS  Google Scholar 

  • Gilmour, C. C., Henry, E. A. and Mitchell, R.: 1992, ‘Sulfate stimulation of mercury methylation in freshwater sediments’, Environ. Sci. Technol. 26, 2281–2294.

    Article  CAS  Google Scholar 

  • Grondin, A., Lucotte, M., Mucci, A. and Fortin, B.: 1995, ‘Mercury and lead profiles and burdens in soils of Quebec (Canada) before and after flooding’, Can. J. Fish. Aquat. Sci. 52, 2493–2506.

    CAS  Google Scholar 

  • Håkanson, L.: 1981, A Manual of Lake Morphometry, Springer-Verlag, pp. 78.

  • Håkanson, L.: 1982, ‘Lake bottom dynamics and morphometry: The dynamic ratio’, Water Res. Res. 18, 1444–1450.

    Article  Google Scholar 

  • Kainz, M., Lucotte, M. and Parrish, C. C.: 2003, ‘Relationships between organic matter composition and methyl mercury content of offshore and carbon-rich littoral sediments in an oligotrophic lake’, Can. J. Fish. Aquat. Sci. 60, 888–896.

    Article  CAS  Google Scholar 

  • Kainz, M. and Lucotte, M.: 2002, ‘Can flooded organic matter from sediments predict mercury concentrations in zooplankton of a perturbed lake?’ Sci. Total Environ. 293, 151–161.

    Article  CAS  Google Scholar 

  • Kelly, C. A., Rudd, J. W. M., St. Louis, V. L. and Heyes, A.: 1995, ‘Is total mercury concentration a good predictor of methyl mercury concentration in aquatic systems?’ Water Air Soil Pollut. 80, 715–724.

    Article  CAS  Google Scholar 

  • Kolka, R. K., Grigal, D. F., Verry, E. S. and Nater, E. A.: 1999, ‘Mercury and organic carbon relationships in streams draining forested upland/peatland watersheds’, J. Environ. Qual. 28, 766–775.

    Article  CAS  Google Scholar 

  • Lee, Y. H., Bishop, K. H., Munthe, J., Iverfeldt, A., Verta, M., Parkman, H. and Hultberg, H.: 1998, ‘An examination of current Hg deposition and export in Fenno-Scandian catchments’, Biogeochem. 40, 125–135.

    Article  CAS  Google Scholar 

  • Lucotte, M., Mucci, A., Hillaire-Marcel, C., Pichet, P. and Grondin, A.: 1995, ‘Anthropogenic mercury enrichment in remote lakes of Northern Quebec (Canada)’, Water Air Soil Pollut. 80, 467–476.

    Article  CAS  Google Scholar 

  • Lucotte, M., Montgomery, S., Caron, B. and Kainz, M.: 1999, ‘Mercury in natural lakes and unperturbed terrestrial ecosystems of northern Québec’, in M. Lucotte, R. Schetagne, N. Thétien, C. Langlois and A. Tremblay (ed.), Mercury in the Biogeochemical Cycle, Springer Verlag, pp. 55–88.

  • Meili, M.: 1997, ‘Mercury in lakes and rivers’, in A. Sigel and H. Sigel (ed.), Mercury and its Effects on Environment and Biology. Metal Ions in Biological Systems, Marcel Dekker, Inc., pp. 21–51.

  • Meyers, P. A. and Ishiwatari, R.: 1993, ‘Lacustrine organic geochemistry – an overview of indicators of organic matter sources and diagenesis in lake sediments’, Org. Geochem. 20, 867–900.

    Article  CAS  Google Scholar 

  • Munthe, J., Hultberg, H., Lee, Y.-H., Parkman, H., Iverfeldt, Å. and Renberg, I.: 1995, ‘Trends of mercury and methylmercury in deposition, run-off water and sediments in relation to experimental manipulations and acidification’, Water Air Soil Pollut. 85, 743–748.

    Article  CAS  Google Scholar 

  • Pichet, P., Morrison, K., Rheault, I. and Tremblay, A.: 1999, ‘Analysis of total mercury and methylmercury in envrionmental samples’, in M. Lucotte, R. Schetagne, N. Thérien, C. Langlois and A. Tremblay (ed.), Mercury in the Biogeochemical Cycle, Springer Verlag, pp. 41–54.

  • Ramlal, P. S., Kelly, C. A., Rudd, J. W. M. and Furutani, A.: 1993, ‘Sites of methyl mercury production in remote Canadian Shield lakes’, Can. J. Fish. Aquat. Sci. 50, 972–979.

    CAS  Google Scholar 

  • Regnell, O. and Ewald, G.: 1997, ‘Factors controlling temporal variation in methyl mercury levels in sediment and water in a seasonally stratified lake’, Limnol. Oceanogr. 42, 1784–1795.

    Article  CAS  Google Scholar 

  • Sun, M. Y., Aller, R. C. and Lee, C.: 1991, ‘Early diagenesis of chlorophyll-a in Long-Island Sound sediments – a measure of carbon flux and particle reworking’, J. Mar. Res. 49, 379–401.

    Article  CAS  Google Scholar 

  • St.Louis, V. L., Rudd, J. W. M., Kelly, C. A., Beaty, K. G., Flett, R. J. and Roulet, N. T.: 1996, ‘Production and loss of methylmercury from boreal forest catchments containing different types of wetlands’, Environ. Sci. Technol. 30, 2719–2729.

    Article  CAS  Google Scholar 

  • Swain, E. B., Engstrom, D. R., Brigham, M. E., Henning, T. A. and Brezonik, P. L.: 1992, ‘Increasing rates of atmospheric mercury deposition in midcontinental North America’, Science 257, 784–787.

    Article  CAS  Google Scholar 

  • Telmer, K. and Desjardins, M.: 2004, ‘Mercury in lake sediments on modern to holocene time scales: Remobilization and links to methane’, RMZ-Mat. & Geoenviron. 1403–1407.

  • Tremblay, A., Cloutier, L. and Lucotte, M.: 1998, ‘Total mercury and methylmercury fluxes via emerging insects in recently flooded hydroelectric reservoirs and a natural lake’, Sci. Total Environ. 219, 209–221.

    Article  CAS  Google Scholar 

  • Tremblay, A. and Lucotte, M.: 1997, ‘Accumulation of total mercury and methyl mercury in insect larvae of hydroelectric reservoirs’, Can. J. Fish. Aquat. Sci. 54, 832–841.

    Article  CAS  Google Scholar 

  • Watras, C. J., Bloom, N. S., Claas, S. A., Morrison, K. A., Gilmour, C. C. and Craig, S. R.: 1995, ‘Methylmercury production in the anoxic hypolimnion of a dimictic seepage lake’, Water Air Soil Pollut. 80, 735–745.

    Article  CAS  Google Scholar 

  • Wihlborg, P., Danielsson, A. and Klingberg, F.: 2004, ‘Mercury in Lake Vanern, Sweden. Distribution in surface sediment and catchment budget’, Water Air Soil Pollut. 154, 85–99.

    Article  CAS  Google Scholar 

  • Yang, H. D. and Rose, N. L.: 2003, ‘Distribution of mercury in six lake sediment cores across the UK’, Sci. Total Environ. 304, 391–404.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kainz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kainz, M., Lucotte, M. Mercury Concentrations in Lake Sediments – Revisiting the Predictive Power of Catchment Morphometry and Organic Matter Composition. Water Air Soil Pollut 170, 173–189 (2006). https://doi.org/10.1007/s11270-006-3009-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-006-3009-z

Keywords

Navigation