Skip to main content
Log in

Runoff Estimation for an Ungauged Catchment Using Geomorphological Instantaneous Unit Hydrograph (GIUH) and Copulas

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

A methodology is proposed to apply Geomorphological Instantaneous Unit Hydrograph to ungauged basins using Monte Carlo Simulations and copulas. The effective rainfall, input of GIUH is assumed to be unknown; it is estimated with infiltration index method (ϕ-index). Correlations are detected between this index and the characteristics of rainfall. They are modeled with copulas, and are used to derive effective rainfall hyetographs. The generated hydrographs from GIUH are analyzed and give statistically the same results: dispersion and variability for all studied characteristics (volume, peak discharge, peak time and base time). However, only these hydrographs derived from ϕ conditioned to maximum intensity distribution allow reconstituting the observed hydrographs. Moreover comparing the series of order statistics of interest output and observed series, leads to decide on the representative hydrograph of the catchment behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Software developed by INRS-ETE, Chaire en hydrologie statistique (HYDRO-QUÉBEC / ALCAN / CRSNG).

References

  • Bárdossy A (2006) Copula-based geostatistical models for groundwater quality parameters. Water Resour Res 42:W11416. doi:10.1029/2005WR004754

    Article  Google Scholar 

  • Bárdossy A, Li J (2008) Geostatistical interpolation using copulas. Water Resour Res 44:W07412. doi:10.1029/2007WR006115

    Article  Google Scholar 

  • Bárdossy A, Mascellani G, Franchini M (2006) Fuzzy unit hydrograph. Water Resour Res 42:W02401. doi:10.1029/2004WR003751

    Article  Google Scholar 

  • Beven KJ (2003) Rainfall-runoff modeling: the primer. Wiley, England, p 372

    Google Scholar 

  • Bhadra A, Panigrahy N, Singh R, Raghuwanshi NS, Mal BC, Tripathi MP (2008) Development of a geomorphological instantaneous unit hydrograph model for scantily gauged watersheds. Environ Model Software 23:1013–1025

    Article  Google Scholar 

  • Bhunya PK, Berndtsson R, Ojha CSP, Mishra SK (2007) Suitability of Gamma, Chi-square, Weibull, and Beta distributions as synthetic unit hydrographs. J Hydrol 334:28–38

    Article  Google Scholar 

  • Bhunya PK, Berndtsson R, Singh PK, Hubert P (2008) Comparison between Weibull and gamma distributions to derive synthetic unit hydrograph using Horton ratios. Water Resour Res 44:W04421. doi:10.1029/2007WR006031

    Article  Google Scholar 

  • Chandramohan T, Venkatesh B, Jain SK (2002) Rainfall-runoff modelling based on GIUH approach in a GIS environment. J Instn Eng 83:180–185

    Google Scholar 

  • Cudennec C (2007) DISCUSSION of “Coding random self-similar river networks and calculating geometric distances: 1. General methodology” and “2. Application to runoff simulations” on width function-based unit hydrographs deduced from separately random self-similar river networks and rainfall variability. Hydrol Sci J 52(1):230–237

    Article  Google Scholar 

  • Cudennec C, Fouad Y, Sumarjo GI, Duchesne J (2004) A geomorphological explanation of the unit hydrograph concept. Hydrolog Process 18(4):603–621. doi:10.1002/hyp. 1368

    Article  Google Scholar 

  • De Michele C, Salvadori G (2003) A generalized pareto intensity–duration model of storm rainfall exploiting 2-copulas. J Geophys Res 108(D2):15-1–15-2

    Google Scholar 

  • De Michele C, Salvadori G, Canossi M, Petaccia A, Rosso R (2005) Bivariate statistical approach to spillway design flood. J Hydrol Eng ASCE 10(1):50–57

    Article  Google Scholar 

  • Eagleson PS (1970) Dynamics hydrology. EGU Reprint Series, 2, 2003, 37191 Katlenburg-Lindau, Germany.

  • Eagleson PS (1972) Dynamics Flood Frequency. Water Resour Res 8(4):878–898

    Article  Google Scholar 

  • Ellouze-Gargouri E, Kebaili-Bargaoui Z (2006) Prédétermination des débits maximaux de crue par simulation Monte-Carlo de la pluie nette. Rev Sci Eau 19(4):327–345

    Google Scholar 

  • Favre AC, El Adlouni S, Perreault TL, Thiemonge N, Bobée B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40(W01101):1–12

    Google Scholar 

  • Fleurant C, Kartiwa B, Roland B (2006) Analytical model for a geomorphological instantaneous unit hydrograph. Hydrol Process 20(18):3879–3895

    Article  Google Scholar 

  • Franchini M, O’Connell PE (1996) An analysis of the dynamic component of the geomorphologic instantaneous unit hydrograph. J Hydrol 175:407–428

    Article  Google Scholar 

  • Gargouri-Ellouze E, Bargaoui Z (2009) Investigation with Kendall plots of infiltration index–maximum rainfall intensity relationship for regionalization. J Phys Chem Earth. doi:10.1016/j.pce.2009.02

  • Gargouri-Ellouze E, Chebchoub A (2008) Depth—duration—frequency with copulas. Hydrol Sci J 53(4):802–817

    Article  Google Scholar 

  • Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Engng ASCE 12:347–368

    Article  Google Scholar 

  • Genest C, Mackay RJ (1986) Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données. Rev Can Statis 14:145–159

    Article  Google Scholar 

  • Genest C, Rivest L (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Statis Assoc 88:1034–1043

    Article  Google Scholar 

  • Goel NK, Kurothe RS, Mathur BS, Vogel RM (2000) A derived flood frequency distribution of correlated rainfall intensity and duration. J Hydrol 228:56–67

    Article  Google Scholar 

  • Grimaldi S, Serinaldi F, Napolitano F, Ubertini L (2005) A 3-copula function application for design hyetograph analysis. In: Savic DA, Mariño MA, Savenije HHG, Bertoni JC (eds) Sustainable water management solutions for large cities. IAHS, Wallingford, pp 293–212

    Google Scholar 

  • Gupta VK, Mesa OJ (1988) Runoff generation and hydrologic response via channel network geomorphology—recent progress and open problems. J Hydrol 102:3–28

    Article  Google Scholar 

  • Gupta VK, Waymire E (1983) On the formulation of an analytical approach to hydrologic response and similarity at the basin scale. J Hydrol 65:95–123

    Article  Google Scholar 

  • Gupta VK, Waymire E, Wang CT (1980) A representation of an instantaneous unit hydrograph from geomorphology. Water Resour Res 16(5):855–862

    Article  Google Scholar 

  • Hermassi T (2000) Analyse des facteurs conditionnels de l’écoulement et de l’érosion dans de petits bassins verssants de la Dorsale tunisienne, M.S. thesis, 68 pp., Institut National Agronomique de Tunisie

  • Horton RE (1933) The role of infiltration in hydrologic cycle. Trans Am Geophys Union 14:446–460

    Google Scholar 

  • Hürlimann W (2004) Fitting bivariate cumulative returns with copulas. Comp Statis Data Anal 45:355–372

    Article  Google Scholar 

  • Jain V, Sinha R (2003) Derivation of unit hydrograph from GIUH analysis for a Himalayan river. Water Resour. Management 17(5), 355–376(22)

    Google Scholar 

  • Jain SK, Singh RD, Seth SM (2000) Design flood estimation using GIS supported GIUH approach. Water Resour Manag 14(5):369–376

    Article  Google Scholar 

  • Jin C-X (1992) A deterministic gamma-type geomorphologic instantaneous unit hydrograph based on path types. Water Resour Res 28(2):479–486

    Article  Google Scholar 

  • Joe H (1997)Multivariate models and dependence concepts. In: Monographs on Statistics and applied probability. Chapman and Hall, London

  • Karlinger MR, Troutman BM (1985) Assessment of the instantaneous unit hydrograph derived from the theory of topologically random networks. Water Resour Res 21(11):1693–1702

    Article  Google Scholar 

  • Kumar R, Chatterjee C, Lohani AK, Kumar S, Singh RD (2002) Sensitivity Analysis of the GIUH based Clark Model for a Catchment. Water Resour. Management 16 (4), 263–278(16)

    Google Scholar 

  • Kumar R, Chatterjee C, Singh RD, Lohani AK, Kumar S (2004) GIUH based Clark and Nash models for runoff estimation for an ungauged basin and their uncertainty analysis. Intl J River Basin Manag 2(4):281–290

    Article  Google Scholar 

  • Kumar R, Chatterjee C, Singh RD, Lohani AK, Kumar S (2007) Runoff estimation for an ungauged catchment using geomorphological instantaneous unit hydrograph (GIUH) models. Hydrol Process 21(14):1829–1840

    Article  Google Scholar 

  • Kurothe RS, Goel NK, Mathur BS (1997) Derived flood frequency distribution for negatively correlated rainfall intensity and duration. Water Resour Res 33(9):2103–2107

    Article  Google Scholar 

  • Kurothe RS, Goel NK, Mathur BS (2001) Derivation of a curve number and kinematic-wave based flood frequency distribution. Hydrol Sci J 46(4):571–583

    Article  Google Scholar 

  • Moussa R (2008) Effect of channel network topology, basin segmentation and rainfall spatial distribution on the geomorphologic instantaneous unit hydrograph transfer function. Hydrol Process 22:395–419

    Article  Google Scholar 

  • Musy A, Higy C (2004) Hydrologie générale, une science de la nature. Presse Polytechnique Universitaire Romande, Lausanne, p 314

    Google Scholar 

  • Nadarajah S (2007) Probability models for unit hydrograph derivation. J Hydrol 344:185–189

    Article  Google Scholar 

  • Nash JE (1959) Systematic determination of unit hydrograph parameters. J Geophys Res 64(1):111–115

    Article  Google Scholar 

  • Nasri S, Cudennec C, Albergel J, Berndtsson R (2004) Use of a geomorphological transfer function to model design floods in small hillside catchments in semiarid Tunisia. J Hydrol 287:197–213

    Article  Google Scholar 

  • Nelsen RB (1999) An Introduction to Copulas. Springer, New York

    Google Scholar 

  • Nowicka B, Soczynska U (1989) Application of GIUH and dimensionless hydrograph models in ungauged basins. In: FRIENDS in Hydrology (ed. by L. Roald, K. Nordseth and K.A. Hassel), Proc. Bolkesjø Symp., Inter. Assoc. Hydrol Sci Pubn 187, 197–203

  • Prokhorov AV (2002) Kendall coefficient of rank correlation. In: Michiel H (ed) Encyclopaedia of mathematics. CWI, Amsterdam

    Google Scholar 

  • Rodriguez-Iturbe I, Valdès JB (1979) The geomorphologic structure of hydrologic response. Water Resour Res 15:1409–1420

    Article  Google Scholar 

  • Rodriguez-Iturbe I, Gonzalez-Sanabria M, Brass RL (1982) A geomorphoclimatic theory of instantaneous unit hydrograph. Water Resour Res 18(4):877–886

    Article  Google Scholar 

  • Rosso R (1984) Nash model relation to Horton order ratios. Water Resour Res 20(7):914–920

    Article  Google Scholar 

  • Sahoo B, Chatterjee C, Raghuwanshi NS, Singh R, Kumar R (2006) Flood estimation by GIUH-Based Clark and Nash models. J Hydrol Eng 11(6):515–525

    Article  Google Scholar 

  • Salvadori G, De Michele C (2006) Statistical characterization of temporal structure of storms. Adv Water Resour 6:827–842

    Article  Google Scholar 

  • Sarangi A, Madramootoo C, Enright P, Prasher S (2007) Evaluation of three unit hydrograph models to predict the surface runoff from a Canadian watershed. Water Resour Management 21 (7) 1127–1143 (17).

    Google Scholar 

  • Schweizer B, Sklar A (1983) Probabilistic metric spaces. Elsevier, Amsterdam

    Google Scholar 

  • Soil Conservation Service (SCS) (1957) Use of storm and watershed characteristics in synthetic hydrograph analysis and application. US Department of Agriculture, Soil Conservation Service, Washington

    Google Scholar 

  • Troutman BM, Karlinger MR (1985) Unit hydrograph approximations assuming linear flow through topologically random channel networks. Water Resour Res 21(5):743–754

    Article  Google Scholar 

  • Valdès JB, Fiallo Y, Rodriguez-Iturbe I (1979) A rainfall-runoff analysis of the geomorphologic IUH. Water Resour Res 15(6):1409–14520

    Article  Google Scholar 

  • van der Tak LD, Brass RL (1990) Incorcorating hillslope effects into the geomorphologic instantaneaous unit hydrograph. Water Resour Res 26(10):2393–2400

    Article  Google Scholar 

  • Venter G (2002) Tails of copulas. Proc Casualty Actuarial Society 89:68–113

    Google Scholar 

  • Venter G (2003) Quantifying correlated reinsurance exposures with copulas. Casualty Actuarial Society Forum 2003:215–229

    Google Scholar 

  • Zhang L, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11(2):150–164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emna Ellouze-Gargouri.

Appendices

Appendix 1

Table 5 Several references published copula models. One famous reference: Nelsen (1999) who presented among these models, the Archimedean ones and particularly those of one parameter. The following table shows the copula generators and the relation between the copula parameter and Kendall’s τ

Appendix 2

K ( z ) function: is the distribution function of the copula C(U,V). Genest and Rivest (1993) showed that this distribution function is related to the generator φ of an Archimedean copula through the expression of K(z):

$$ K(z) = z - \phi (z)/\phi '(z) $$
(A2.1)

An empirical K(z) can be calculated for any z as the proportion of empirical values of C(u,v) that is less than z:

$$ {K_{\text{emp}}}(z) = \left\{ {{\text{number}}\,\,{\text{o}}f\,\,{z_i} \leqslant \,\,z} \right\}/n $$
(A2.2)

J ( z ) function or cumulative τ : tau is related to a copula through the expression:

$$ \tau = - 1 + 4\int\limits_0^1 {\int\limits_0^1 {C(u,v)c(u,v){\text{d}}u{\text{d}}v} } $$
(A2.3)

J(z) function is expressed by:

$$ J(z) = - 1 + 4\left( {\int\limits_0^z {\int\limits_0^z {C(u,v)c(u,v){\text{dudv}}} } } \right)/C{(z,z)^2} $$
(A2.4)

The full double integral is a probability weighted average of C(u,v). To compare this, the partial integral has to be divided by the weights, thus the first power of C(z, z) is the denominator. This quotient gives the average value of C(u,v), which increases as a function of z. The second C(z, z) divisor expresses this average relative to C(z, z). It should be that \( J(1) = \tau \) .

An empirical cumulative tau can also be calculated, expressed by:

$$ J(z) = - 1 + 4I(z)/C{(z,z)^2} $$
(A2.5)

Where I(z) is defined by \( I(z) = \frac{1}{n}\,\,\sum\limits_{i = 1}^n {{z_i}\, \times } \)I\( \left\{ {{u_i} < z\,et\,{v_i}\, < \,z} \right\} \) , with I is the indicator function.

M ( z ) function is the cumulative conditional mean defined by:

$$ M(z) = E(V\left| U \right. < z) = \left( {\int\limits_{u = 0}^z {\int\limits_{v = 0}^1 {v \cdot c(u,v){\text{d}}u{\text{d}}v} } } \right)/z $$
(A2.6)

Verifying M(1) = 1/2.

Let D(z) \( D(z) = \sum\limits_{i = 1}^n {\text{I}} \left\{ {{u_i} < z} \right\} \) and \( N(z) = \sum\limits_{i = 1}^n {{v_i}{\text{I}}\left\{ {{u_i} < z} \right\}} \), the empirical version of M(z) is expressed by:

$$ M(z) = N(z)/D(z) $$
(A2.7)

With D(1) = n and N(1) = n/2.

L ( z ) and R ( z ) functions are Left and Right tail concentration functions. The two functions L(z) and R(z) are:

$$ L(z) = P(U < z,\,V < z)/z = C(z,z)/z $$
(A2.8)
$$ R(z) = P(U > z\,\,{,}\,\,V > z)/(1 - z) = \left( {1 - 2z + C(z,z)} \right)/(1 - z) $$
(A2.9)

Joe (1997) defined lower tail dependence parameter for L(0)=\( {\lambda_{\min }} = \mathop {{\lim }}\limits_{u \to 1} P(Y \leqslant F_Y^{ - 1}(u)\left| {X \leqslant F_X^{ - 1}(u)} \right.) = \mathop {{\lim }}\limits_{z \to 0} L(z) \) (left tail), and upper tail dependence parameter for R(1)=\( {\lambda_{\max }} = \mathop {{\lim }}\limits_{u \to 1} P(Y > F_Y^{ - 1}(u)\left| {X > F_X^{ - 1}(u)} \right.) = \mathop {{\lim }}\limits_{z - 1} R(z) \) (right tail).

L function is analyzed for z \( \in \left[ {0,\frac{1}{2}} \right] \) and R function for all z \( \in \left[ {\frac{1}{2},1} \right] \).

Appendix 3

Let (X,Y) be a sample of size n.

The X i and Y i are regrouped into 6 classes respectively (v 0 ; v 1 ]; (v 1 ; v 2 ]; …; (v 5 ; v 6 ], and (w 0 ; w 1 ]; (w 1 ; w 2 ]; …; (w 5 ; w 6 ], where the boundaries v i ’s (w i ) are chosen such that the number of observations λ1, λ2 …, λ6 respectively η1, η2 …, η6, in the corresponding classes are as symmetrically distributed as possible. We thus obtain 36 two-dimensional intervals (v i-1 ; v i ] x (w i-1 ; v i ], i,j = 1….6. Then we regroup these intervals in k larger rectangular interval classes, such that an expected frequency of at least 1% in each class and a 5% expected frequency in 80% of the classes. The fitted number of observations f i,j in each 36 two-dimensional intervals (v i-1 ; v i ] x (w i-1 ; v i ], is given by:

$$ \begin{array}{*{20}l} {{f_{{i,j}} = n{\left[ {{\left( {F{\left( {v_{i} } \right)},F{\left( {w_{j} } \right)}} \right)} - {\left( {F{\left( {v_{{i - 1}} } \right)},F{\left( {w_{j} } \right)}} \right)} - {\left( {F{\left( {v_{i} } \right)},F{\left( {w_{{j - 1}} } \right)}} \right)} + {\left( {F{\left( {v_{{i - 1}} } \right)},F{\left( {w_{{j - 1}} } \right)}} \right)}} \right]}} \hfill} \\ {{i,j = 1.....6,\quad F{\left( {x,y} \right)} = C{\left( {F_{X} {\left( x \right)},F_{Y} {\left( y \right)}} \right)}} \hfill} \\ \end{array} $$
(A3.1)

Let z i,j be the number of observations in the 36 two-dimensional intervals. Through summation of z i j ’s respectively f i;j ’s, one obtains the number of observations O k , respectively, the expected number of observations E k , in each rectangular interval class k. The bivariate Chi-square statistic is then defined by:

$$ {\chi^2} = \sum\limits_{k = 1}^m {{{\left( {{O_k} - {E_k}} \right)}^2}/{E_k}} $$
(A3.2)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellouze-Gargouri, E., Bargaoui, Z. Runoff Estimation for an Ungauged Catchment Using Geomorphological Instantaneous Unit Hydrograph (GIUH) and Copulas. Water Resour Manage 26, 1615–1638 (2012). https://doi.org/10.1007/s11269-012-9975-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-012-9975-6

Keywords

Navigation