Abstract
In this paper, a non-line of sight (NLOS) error mitigation method based on biased Kalman filtering for ultra-wideband (UWB) ranging is proposed. The NLOS effect on the measures of signal arrival time is considered one of the major error sources in range estimation and time-based wireless location systems. An improved biased Kalman filtering system, incorporated with sliding-window data smoothing and hypothesis test, is used for NLOS identification and error mitigation. Based on the results of hypothesis test, the estimated ranges are either calculated by smoothing the measured range when line of sight (LOS) status is detected, or obtained by conducting error mitigation on the NLOS corrupted measured range when NLOS status is detected. The effectiveness of the proposed scheme in mitigating errors during the LOS-to-NLOS and NLOS-to-LOS transitions is discussed. Improved NLOS identification and mitigation during the NLOS/LOS variations of channel status are attained by an adaptive variance-adjusting scheme in the biased filter. Simulation results show that the UWB channel status and the transition between NLOS and LOS can be identified promptly by the proposed scheme. The estimated time-based location metrics can be used for achieving higher accuracy in location estimation and target tracking.











Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Al-Jazzar, S., & Caffery, J. Jr. (2002). ML and Bayesian TOA location estimators for NLOS environments. In Proceedings of IEEE Vehicular Technology Conference (Vol. 2, pp. 1178–1181).
Al-Jazzar, S., Caffery, J. Jr., & You, H. R. (2002). A scattering model based approach to NLOS mitigation in TOA location systems. In Proceedings of IEEE Vehicular Technology Conference (Vol. 2, pp. 861–865).
Borras, J., Hatrack, P., & Mandayam, N. (1998). Decision theoretic framework for NLOS identification. In Proceedings of 48th IEEE Vehicular Technology Conference (VTC 98) (Vol. 2, pp. 1583–1587). doi:10.1109/VETEC.1998.686556.
Chan, Y. T., Tsui, W. Y., So, H. C., & Ching, P.C. (2006). Time-of-arrival based localization under NLOS conditions. IEEE Transactions on Vehicular Technology, 55(1), 17–24.
Chan, Y. T., Yau, C. H., & Ching, P. C. (2006). Exact and approximate maximum likelihood localization algorithms. IEEE Transactions on Vehicular Technology, 55(1), 10–16.
Chen, P. C. (1999). A non-line-of-sight error mitigation algorithm in location estimation. In Proceeding of the IEEE wireless communications and networking conference (Vol. 1, pp. 316–320).
Cong, L., & Zhuang, W. (2001). Non-line-of-sight error mitigation in TDOA mobile location. In Proceedings of IEEE global telecommunications conference (vol. 1, pp. 680–684).
Fontana, R., & Gunderson, S. (2002). Ultra-wideband precision asset location system. In Proceedings of 2002 IEEE conference on ultra wideband systems and technologies (pp. 147–150). doi:10.1109/UWBST.2002.1006336.
Fritsche, C., Hammes, U., Klein, A., & Zoubir, A. (2009) Robust mobile terminal tracking in NLOS environments using interacting multiple model algorithm. In IEEE international conference on acoustics, speech and signal processing (pp. 3049–3052). doi:10.1109/ICASSP.2009.4960267.
Gezici, S., Kobayashi, H., & Poor, H. (2003). Nonparametric nonline-of-sight identification. In Proceedings of IEEE 58th vehicular technology conference (VTC 2003-Fall) (Vol. 4, pp. 2544–2548). doi:10.1109/VETECF.2003.1285996.
Gezici, S., Tian, Z., Giannakis, G., Kobayashi, H., Molisch, A., Poor, H., et al. (2005). Localization via ultra-wideband radios: A look at positioning aspects for future sensor networks. IEEE Signal Processing Magazine, 22(4), 70–84. doi:10.1109/MSP.2005.1458289.
Gu, Y., Lo, A., & Niemegeers, I. (2009). A survey of indoor positioning systems for wireless personal networks. IEEE Communications Surveys & Tutorials, 11(1), 13–32. doi:10.1109/SURV.2009.090103.
Gustafsson, F., & Gunnarsson, F. (2005). Mobile positioning using wireless networks: possibilities and fundamental limitations based on available wireless network measurements. IEEE Signal Processing Magazine, 22(4), 41–53. doi:10.1109/MSP.2005.1458284.
Guvenc, I., & Chong, C. C. (2009). A survey on TOA based wireless localization and NLOS mitigation techniques. IEEE Communications Surveys & Tutorials, 11(3), 107–124. doi:10.1109/SURV.2009.090308.
Guvenc, I., Chong, C. C., & Watanabe, F. (2007). NLOS identification and mitigation for UWB localization systems. In Proceedings of IEEE wireless communications and networking conference (pp. 1571–1576). doi:10.1109/WCNC.2007.296.
Hammes, U., Wolsztynski, E., & Zoubir, A. (2009). Robust tracking and geolocation for wireless networks in NLOS environments. IEEE Journal of Selected Topics in Signal Processing, 3(5), 889–901. doi:10.1109/JSTSP.2009.2028383.
Hellebrandt, M., & Mathar, R. (1999). Location tracking of mobiles in cellular radio networks. IEEE Transactions on Vehicular Technology, 48(5), 1558–1562. doi:10.1109/25.790530.
Hirt, W. (2003). Ultra-wideband radio technology: Overview and future research. Computer Communications, 26(1), 46–52.
Kay, S. M. (1993). Fundamentals of statistical signal processing: Estimation theory (Vol. I). Prentice Hall.
Le, B. L., Ahmed, K., & Tsuji, H. (2003). Mobile location estimator with NLOS mitigation using Kalman filtering. In Proceedings of IEEE wireless communications and networking conference (Vol. 3, pp. 1969–1973). doi:10.1109/WCNC.2003.1200689.
Liao, J. F., & Chen, B. S. (2006). Robust mobile location estimator with NLOS mitigation using interacting multiple model algorithm. IEEE Transactions on Wireless Communications, 5(11), 3002–3006. doi:10.1109/TWC.2006.04747.
Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 37(6), 1067–1080. doi:10.1109/TSMCC.2007.905750.
Mendel, J. M. (1986). Lessons in digital estimation theory. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
Molisch, A., Foerster, J., & Pendergrass, M. (2003). Channel models for ultrawideband personal area networks. IEEE Wireless Communications, 10(6), 14–21. doi:10.1109/MWC.2003.1265848.
Mucchi, L., & Marcocci, P. (2009). A new parameter for UWB indoor channel profile identification. IEEE Transactions on Wireless Communications, 8(4), 1597–1602. doi:10.1109/TWC.2009.070318.
Najar, M., & Vidal, J. (2003). Kalman tracking for mobile location in NLOS situations. In Proceedings of 14th IEEE personal, indoor and mobile radio communications conference (Vol. 3, pp. 2203–2207). doi:10.1109/PIMRC.2003.1259107.
Pahlavan, K., Krishnamurthy, P., & Beneat, A. (1998). Wideband radio propagation modeling for indoor geolocation applications. IEEE Communications Magazine 36(4), 60–65. doi:10.1109/35.667414.
Park, H. J., Kim, M. J., So, Y. J., You, Y. H., & Song, H. K. (2003). UWB communication system for home entertainment network. IEEE Transactions on Consumer Electronics, 49(2), 302–311. doi:10.1109/TCE.2003.1209518.
Porcino, D., & Hirt, W. (2003). Ultra-wideband radio technology: Potential and challenges ahead. IEEE Communications Magazine, 41(7), 66–74. doi:10.1109/MCOM.2003.1215641.
Rohrig, C., & Muller, M. (2009). Indoor location tracking in non-line-of-sight environments using a IEEE 802.15.4a wireless network. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 552–557). doi:10.1109/IROS.2009.5354747.
Saleh, A., & Valenzuela, R. (1987). A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications, 5(2), 128–137.
Sayed, A., Tarighat, A., & Khajehnouri, N. (2005). Network-based wireless location: Challenges faced in developing techniques for accurate wireless location information. IEEE Signal Processing Magazine, 22(4), 24–40. doi:10.1109/MSP.2005.1458275.
Thomas, N., Cruickshank, D., & Laurenson, D. (2000). A robust location estimator architecture with biased Kalman filtering of TOA data for wireless systems. In Proceedings of 2000 IEEE sixth international symposium on spread spectrum techniques and applications (Vol. 1, pp. 296–300). doi:10.1109/ISSSTA.2000.878132.
Venkatesh, S., & Buehrer, R. (2007). NLOS mitigation using linear programming in ultrawideband location-aware networks. IEEE Transactions on Vehicular Technology, 56(5), 3182–3198. doi:10.1109/TVT.2007.900397.
Wann, C. D., & Lin, H. Y. (2009). Hybrid TOA/AOA estimation error test and non-line of sight identification in wireless location. Wireless Communications and Mobile Computing, 9(6), 859–873. doi:10.1002/wcm.799.
Win, M., & Scholtz, R. (1998). Impulse radio: How it works. IEEE Communications Letters, 2(2), 36–38. doi:10.1109/4234.660796.
Wylie, M., & Holtzman, J. (1996). The non-line of sight problem in mobile location estimation. In Proceedings of IEEE international conference on universal personal communications (vol. 2, pp. 827–831).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wann, CD., Hsueh, CS. Non-line of Sight Error Mitigation in Ultra-wideband Ranging Systems Using Biased Kalman Filtering. J Sign Process Syst 64, 389–400 (2011). https://doi.org/10.1007/s11265-010-0493-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11265-010-0493-6