Skip to main content
Log in

Ambulatory Hip Angle Estimation using Gaussian Particle Filter

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Hip angle is a major parameter in gait analysis while gait analysis plays an important role in healthcare, animation and other applications. Accurate estimation of hip angle using wearable inertial sensors in ambulatory environment remains a challenge because 1) the non-linear nature of thigh movement has not been well addressed, and 2) the variation of micro-inertial sensor measurement noise has not been studied yet. We propose to use Hybrid Dynamic Bayesian Network (HDBN) to model the non-linear hip angle dynamics and variation of measurement noise levels, and Gaussian Particle Filter (GPF) to estimate the hip angle during gait cycles from the measurements of the wearable accelerometers that are attached to the thighs. The experiments have been conducted and the results have shown that the proposed method can achieve significant accuracy improvement over the previous work on the ambulatory hip angle estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Salarian, A., Russmann, H., Vingerhoets, F. J., et al. (2004). Gait assessment in Parkinson’s disease: Toward an ambulatory system for long-term monitoring. IEEE Transactions on Biomedical Engineering, 51(8), 1434–1443.

    Article  Google Scholar 

  2. Beauchet, O., Allali, G., Berrut et al. (2008). Gait analysis in demented subjects: Interests and perspectives. Neuropsychiatr Dis Treat 4(14).

  3. Read, H. S., Hazlewood, M. E., Hillman, S. J., et al. (2003). Edinburgh visual gait score for use in cerebral palsy. Journal of pediatric orthopedics, 23(3), 296–301. doi:10.1097/00004694-200305000-00005.

    Article  Google Scholar 

  4. Welch, G., & Foxlin, E. (2002). Motion tracking: No silver bullet, but a respectable arsenal. IEEE computer graphics and applications, 22(6), 24–38. doi:10.1109/MCG.2002.1046626.

    Article  Google Scholar 

  5. Vlasic, D., Adelsberger, R., Vannucci, G., et al. (2007). Practical motion capture in everyday surroundings. ACM Trans Graph, 26(3), TOG doi:10.1145/1276377.1276421

  6. Mayagoitia, R. E., Nene, A. V., & Veltink, P. H. (2002). Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternate to optical motion analysis systems. Journal of biomechanics, 35, 537–542. doi:10.1016/S0021-9290(01)00231-7.

    Article  Google Scholar 

  7. Dejnabadi, H., Jolles, B. M., & Aminian, K. (2008). A New Approach for Quantitative Analysis of Inter-Joint Coordination During Gait. IEEE Transactions on Biomedical Engineering, 55(2), 755–764. doi:10.1109/TBME.2007.901034.

    Article  Google Scholar 

  8. Favre, J., Jolles, B.M., Siegrist, O., Aminian, K. (2006). Quaternion-based fusion of gyroscopes and accelerometers to improve 3D angle measurement. Electron Lett, 42(11) doi:10.1049/el:20060124

  9. Dong, L., Wu, J. K., & Bao, X. M. (2006). Tracking of Thigh Flexion Angle during Gait Cycles in an Ambulatory Activity Monitoring Sensor Network. Acta Automatica Sinica, 32(6), 938–946.

    Google Scholar 

  10. Dong, L., Wu, J., & Bao, X. (2006). A Hybrid HMM/Kalman Filter for Tracking Hip Angle in Gait Cycle. IEICE TRANSACTIONS on Information and Systems, 7, 2319–2323.

    Article  Google Scholar 

  11. Murphy, K.P. (1998.) Switching kalman filters. Dept. of Computer Science, University of California, Berkeley, Tech. Rep.

  12. Doucet, A., Gordon, N., & Krishnamurthy, V. (2001). Particle filters for state estimation of jump Markov linear systems. IEEE transactions on signal processing, 49(3), 613–624. doi:10.1109/78.905890.

    Article  Google Scholar 

  13. Chen, R., & Liu, J. S. (2000). Mixture kalman filters. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 62, 493–508. doi:10.1111/1467-9868.00246.

    Article  MATH  MathSciNet  Google Scholar 

  14. De Freitas, N. (2002). Rao-Blackwellised particle filtering for fault diagnosis. 2002 IEEE Aerospace Conference Proceedings, 4, 1764–1767.

    Google Scholar 

  15. Hutter, F., Dearden, R. (2002). The gaussian particle filter for diagnosis of non-linear systems. Proceedings of the Fourteenth International Workshop on the Principles of Diagnosis.

  16. Murray, M., Drought, A. B., & Kory, R. C. (1964). Walking patterns of normal men. The journal of bone and joint surgery, 46(2), 335.

    Google Scholar 

  17. Arulampalam, M. S., Maskell, S., Gordon, N., et al. (2002). A tutorial on particle filters for online nonlinear/non-GaussianBayesian tracking. IEEE transactions on signal processing, 50(2), 174–188. doi:10.1109/78.978374.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiankang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Huang, Z. & Wu, J. Ambulatory Hip Angle Estimation using Gaussian Particle Filter. J Sign Process Syst Sign Image Video Technol 58, 341–357 (2010). https://doi.org/10.1007/s11265-009-0373-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-009-0373-0

Keywords

Navigation