Skip to main content
Log in

Learning the Clustering of Longitudinal Shape Data Sets into a Mixture of Independent or Branching Trajectories

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Given repeated observations of several subjects over time, i.e. a longitudinal data set, this paper introduces a new model to learn a classification of the shapes progression in an unsupervised setting: we automatically cluster a longitudinal data set in different classes without labels. Our method learns for each cluster an average shape trajectory (or representative curve) and its variance in space and time. Representative trajectories are built as the combination of pieces of curves. This mixture model is flexible enough to handle independent trajectories for each cluster as well as fork and merge scenarios. The estimation of such non linear mixture models in high dimension is known to be difficult because of the trapping states effect that hampers the optimisation of cluster assignments during training. We address this issue by using a tempered version of the stochastic EM algorithm. Finally, we apply our algorithm on different data sets. First, synthetic data are used to show that a tempered scheme achieves better convergence. We then apply our method to different real data sets: 1D RECIST score used to monitor tumors growth, 3D facial expressions and meshes of the hippocampus. In particular, we show how the method can be used to test different scenarios of hippocampus atrophy in ageing by using an heteregenous population of normal ageing individuals and mild cognitive impaired subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abdelkader, M. F., Abd-Almageed, W., Srivastava, A., & Chellappa, R. (2011). Silhouette-based gesture and action recognition via modeling trajectories on Riemannian shape manifolds. Computer Vision and Image Understanding., 3, 439–455. https://doi.org/10.1016/j.cviu.2010.10.006.

    Article  Google Scholar 

  • Allassonnière, A., & Chevallier, J. (2019). A new class of em algorithms. Escaping local minima and handling intractable sampling

  • Allassonniere, S., Chevallier, J., & Oudard, S. (2017). Learning spatiotemporal piecewise-geodesic trajectories from longitudinal manifold-valued data. In Advances in neural information processing systems (pp. 1152–1160).

  • Allassonnière, A., Durrleman, S., & Kuhn, E. (2015). Bayesian mixed effect atlas estimation with a diffeomorphic deformation model. SIAM Journal on Imaging Sciences, 8(3), 1367–1395.

    Article  MathSciNet  Google Scholar 

  • Allassonnière, A., & Kuhn, E. (2010). Stochastic algorithm for bayesian mixture effect template estimation. ESAIM: Probability and Statistics, 14, 382–408.

    Article  MathSciNet  Google Scholar 

  • Allassonnière, A., Kuhn, E., Trouvé, A., et al. (2010). Construction of bayesian deformable models via a stochastic approximation algorithm: a convergence study. Bernoulli, 16(3), 641–678.

    Article  MathSciNet  Google Scholar 

  • Bône, A., Colliot, O., & Durrleman, S. (2018). Learning distributions of shape trajectories from longitudinal datasets: A hierarchical model on a manifold of diffeomorphisms. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp 9271–9280).

  • Chakraborty, R., Singh, V., Adluru, N., & Vemuri, B. C. (2017). A geometric framework for statistical analysis of trajectories with distinct temporal spans. In Proceedings of the IEEE international conference on computer vision (pp. 172–181)

  • Charon, N., & Trouvé, A. (2013). The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM Journal on Imaging Sciences, 6(4), 2547–2580.

    Article  MathSciNet  Google Scholar 

  • Debavelaere, V., Bône, A., Durrleman, S., & Allassonnière, S. (2019) . Clustering of longitudinal shape data sets using mixture of separate or branching trajectories

  • Delyon, B., Lavielle, M., Moulines, E., et al. (1999). Convergence of a stochastic approximation version of the em algorithm. The Annals of Statistics, 27(1), 94–128.

    Article  MathSciNet  Google Scholar 

  • Donohue, M. C., Jacqmin-Gadda, H., Le Goff, M., Thomas, R. G., Raman, R., Gamst, A. C., et al. (2014). Estimating long-term multivariate progression from short-term data. Alzheimer’s & Dementia, 10(5), S400–S410.

    Article  Google Scholar 

  • Durrleman, S., Allassonnière, A., & Joshi, S. (2013). Sparse adaptive parameterization of variability in image ensembles. International Journal of Computer Vision, 101(1), 161–183.

    Article  MathSciNet  Google Scholar 

  • Fletcher, P. T. (2013). Geodesic regression and the theory of least squares on riemannian manifolds. International Journal of Computer vision, 105(2), 171–185.

    Article  MathSciNet  Google Scholar 

  • Hong, Y., Singh, N., Kwitt, R., & Niethammer, M. (2015). Group testing for longitudinal data. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9123, pp. 139–151). Springer. https://doi.org/10.1007/978-3-319-19992-4_11

  • Jedynak, B. M., Lang, A., Liu, B., Katz, E., Zhang, Y., Wyman, B. T., et al. (2012). A computational neurodegenerative disease progression score: Method and results with the alzheimer’s disease neuroimaging initiative cohort. Neuroimage, 63(3), 1478–1486.

    Article  Google Scholar 

  • Kendall, D. G. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16(2), 81–121. https://doi.org/10.1112/blms/16.2.81.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, H. J., Adluru, N., Suri, H., Vemuri, B. C., Johnson, S., & Singh, V. (2017). Riemannian nonlinear mixed effects models: Analyzing longitudinal deformations in neuroimaging. In Proceedings—30th IEEE conference on computer vision and pattern recognition (CVPR 2017) (Vol. 2017-Janua, pp. 5777–5786). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/CVPR.2017.612; ISBN: 9781538604571.

  • Lorenzen, P., Davis, B. C., & Joshi, S. (2005). Unbiased atlas formation via large deformations metric mapping. In International conference on medical image computing and computer-assisted intervention (pp. 411–418). Springer.

  • Lorenzi, M., Ayache, N., & Pennec, X. (2011). Schild’s ladder for the parallel transport of deformations in time series of images. In Biennial international conference on information processing in medical imaging (pp. 463–474). Springer

  • Louis, M., Bône, A., Charlier, B., Durrleman, S. Alzheimer’s Disease Neuroimaging Initiative, et al. (2017). Parallel transport in shape analysis: a scalable numerical scheme. In International conference on geometric science of information (pp. 29–37). Springer

  • Miller, M. I., Trouvé, A., & Younes, L. (2006). Geodesic shooting for computational anatomy. Journal of Mathematical Imaging and Vision, 24(2), 209–228.

    Article  MathSciNet  Google Scholar 

  • Muralidharan P., & Fletcher, P. T. (2012). Sasaki metrics for analysis of longitudinal data on manifolds. In 2012 IEEE conference on computer vision and pattern recognition (pp. 1027–1034). IEEE

  • Schiratti, J.-B., Allassonniere, S., Colliot, O., & Durrleman, S. (2015). Learning spatiotemporal trajectories from manifold-valued longitudinal data. In Advances in neural information processing systems (pp. 2404–2412).

  • Schiratti, J.-B., Allassonnière, A., Colliot, O., & Durrleman, S. (2017). A bayesian mixed-effects model to learn trajectories of changes from repeated manifold-valued observations. The Journal of Machine Learning Research, 18(1), 4840–4872.

    MathSciNet  MATH  Google Scholar 

  • Singh, N., Hinkle, J., Joshi, S., & Fletcher, P. T. (2016). Hierarchical geodesic models in diffeomorphisms. International Journal of Computer Vision, 117(1), 70–92.

    Article  MathSciNet  Google Scholar 

  • Srivastava, A., Joshi, S. H., Mio, W., & Liu, X. (2005). Statistical shape analysis: Clustering, learning, and testing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4), 590–602. https://doi.org/10.1109/TPAMI.2005.86.

    Article  Google Scholar 

  • Su, J., Kurtek, S., Klassen, E., Srivastava, A., et al. (2014). Statistical analysis of trajectories on Riemannian manifolds: bird migration, hurricane tracking and video surveillance. The Annals of Applied Statistics, 8(1), 530–552.

    Article  MathSciNet  Google Scholar 

  • Therasse, P., Arbuck, S. G., Eisenhauer, E. A., Wanders, J., Kaplan, R. S., Rubinstein, L., et al. (2000). New guidelines to evaluate the response to treatment in solid tumors. Journal of the National Cancer Institute, 92(3), 205–216.

    Article  Google Scholar 

  • Vaillant, M., & Glaunès, J., (2005). Surface matching via currents. In Biennial international conference on information processing in medical imaging (pp. 381–392). Springer

  • Vercauteren, T., Pennec, X., Perchant, A., & Ayache, N. (2009). Diffeomorphic demons: efficient non-parametric image registration. NeuroImage, 45(1 Suppl), S61–S72. https://doi.org/10.1016/j.neuroimage.2008.10.040.

    Article  Google Scholar 

  • Yin, L., Chenand X., Sun, Y., Worm, T., & Reale, M. (2008). A high-resolution 3d dynamic facial expression database, 2008. In IEEE international conference on automatic face and gesture recognition, Amsterdam, The Netherlands (Vol. 126).

Download references

Acknowledgements

This work has been partly funded by the European Research Council with grant 678304.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Vianney Debavelaere.

Additional information

Communicated by B. C. Vemuri.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data used in preparation of this article were obtained from the Alzheimers Disease Neuroimaging Initiative (ADNI) database. As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: https://adni.loni.usc.edu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debavelaere, V., Durrleman, S., Allassonnière, S. et al. Learning the Clustering of Longitudinal Shape Data Sets into a Mixture of Independent or Branching Trajectories. Int J Comput Vis 128, 2794–2809 (2020). https://doi.org/10.1007/s11263-020-01337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-020-01337-8

Keywords

Navigation