Skip to main content
Log in

Pose-Invariant Facial Expression Recognition Using Variable-Intensity Templates

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In this paper, we propose a method for pose-invariant facial expression recognition from monocular video sequences. The advantage of our method is that, unlike existing methods, our method uses a simple model, called the variable-intensity template, for describing different facial expressions. This makes it possible to prepare a model for each person with very little time and effort. Variable-intensity templates describe how the intensities of multiple points, defined in the vicinity of facial parts, vary with different facial expressions. By using this model in the framework of a particle filter, our method is capable of estimating facial poses and expressions simultaneously. Experiments demonstrate the effectiveness of our method. A recognition rate of over 90% is achieved for all facial orientations, horizontal, vertical, and in-plane, in the range of ±40 degrees, ±20 degrees, and ±40 degrees from the frontal view, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartlett, M. S., Littlewort, G., Frank, M. G., Lainscsek, C., Fasel, I. R., & Movellan, J. R. (2006). Automatic recognition of facial actions in spontaneous expressions. Journal of Multimedia, 1(6), 22–35.

    Article  Google Scholar 

  • Beaton, A. E., & Tukey, J. W. (1974). The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics, 16(2), 147–185.

    Article  MATH  Google Scholar 

  • Black, M. J., & Yacoob, Y. (1997). Recognizing facial expressions in image sequences using local parameterized models of image motion. International Journal of Computer Vision, 25(1), 23–48.

    Article  Google Scholar 

  • Cascia, M. L., Sclaroff, S., & Athitsos, V. (2000). Fast, reliable head tracking under varying illumination: An approach based on registration of texture-mapped 3D models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(4), 322–336.

    Article  Google Scholar 

  • Castrillon, M., Deniz, O., Guerra, C., & Hernandez, M. (2007). Encara2: Real-time detection of multiple faces at different resolutions in video streams. Journal of Visual Communication and Image Representation, 18(2), 130–140.

    Article  Google Scholar 

  • Chang, Y., Hu, C., Feris, R., & Turk, M. (2006). Manifold based analysis of facial expression. Image and Vision Computing, 24(6), 605–614.

    Article  Google Scholar 

  • Cohen, I., Sebe, N., Garg, A., Chen, L. S., & Huang, T. S. (2003). Facial expression recognition from video sequences: temporal and static modeling. Computer Vision and Image Understanding, 91(1–2), 160–187.

    Article  Google Scholar 

  • Dornaika, F., & Davoine, F. (2008). Simultaneous facial action tracking and expression recognition in the presence of head motion. International Journal of Computer Vision, 76(3), 257–281.

    Article  Google Scholar 

  • Ekman, P., & Friesen, W. V. (1975). Unmasking the face: a guide to recognizing emotions from facial expressions. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Ekman, P., & Friesen, W. V. (1978). The facial action coding system: a technique for the measurement of facial movement. Palo Alto: Consulting Psychologists Press.

    Google Scholar 

  • Ekman, P., Friesen, W. V., & Hager, J. C. (2002). FACS investigator’s guide. A human face.

  • Fasel, B., & Luettin, J. (2003). Automatic facial expression analysis: Survey. Pattern Recognition, 36, 259–275.

    Article  MATH  Google Scholar 

  • Fasel, B., Monay, F., & Gatica-Perez, D. (2004). Latent semantic analysis of facial action codes for automatic facial expression recognition. In Proceedings of the ACM SIGMM international workshop on multimedia information retrieval (pp. 181–188).

  • Geman, S., & McClure, D. E. (1987). Statistical methods for tomographic image reconstruction. Bulletin of the International Statistical Institute, LII, 5–21.

    MathSciNet  Google Scholar 

  • Gokturk, S. B., Tomasi, C., Girod, B., & Bouguet, J. (2002). Model-based face tracking for view-independent facial expression recognition. In Proceedings of the IEEE international conference on automatic face and gesture recognition (pp. 287–293).

  • Gross, R., Matthews, I., & Baker, S. (2005). Generic vs. person specific active appearance models. Image and Vision Computing, 23(11), 1080–1093.

    Article  Google Scholar 

  • Hu, Y., Zeng, Z., Yin, L., Wei, X., Zhou, X., & Huang, T. S. (2008). Multi-view facial expression recognition. In Proceedings of the IEEE international conference on automatic face and gesture recognition.

  • Huang, C. L., & Huang, Y. M. (1997). Facial expression recognition using model-based feature extraction and action parameters classification. Journal of Visual Communication and Image Representation, 8(3), 278–290.

    Article  Google Scholar 

  • Isard, M., & Blake, A. (1998). Condensation—conditional density propagation for visual tracking. International Journal of Computer Vision, 29(1), 5–28.

    Article  Google Scholar 

  • Kanade, T., Cohn, J., & Tian, Y. L. (2000). Comprehensive database for facial expression analysis. In Proceedings of the IEEE international conference on automatic face and gesture recognition (pp. 46–53).

  • Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321–331.

    Article  Google Scholar 

  • Koelstra, S., & Pantic, M. (2008). Non-rigid registration using free-form deformations for recognition of facial actions and their temporal dynamics. In Proceedings of the IEEE international conference on automatic face and gesture recognition.

  • Kotsia, I., & Pitas, I. (2007). Facial expression recognition in image sequences using geometric deformation features and support vector machines. IEEE Transactions on Image Processing, 16(1), 172–187.

    Article  MathSciNet  Google Scholar 

  • Kumano, S., Otsuka, K., Yamato, J., Maeda, E., & Sato, Y. (2007). Pose-invariant facial expression recognition using variable-intensity templates. In Proceedings of Asian conference on computer vision (Vol. 1, pp. 324–334).

  • Lanitis, A., Taylor, C. J., & Cootes, T. F. (1997). Automatic interpretation and coding of face images using flexible models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 743–756.

    Article  Google Scholar 

  • Liao, W. K., & Cohen, I. (2006). Belief propagation driven method for facial gestures recognition in presence of occlusions. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition workshop (pp. 158–163).

  • Littlewort, G., Bartlett, M. S., Fasel, I. R., Susskind, J., & Movellan, J. R. (2006). Dynamics of facial expression extracted automatically from video. Image and Vision Computing, 24(6), 615–625.

    Article  Google Scholar 

  • Loy, G., & Zelinsky, A. (2003). Fast radial symmetry for detecting points of interest. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8), 959–973.

    Article  Google Scholar 

  • Lucey, S., Matthews, I., Hu, C., Ambadar, Z., Torre, F., & Cohn, J. (2006). AAM derived face representations for robust facial action recognition. In Proceedings of the IEEE international conference on automatic face and gesture recognition (pp. 155–160).

  • Matsubara, Y., & Shakunaga, T. (2005). Sparse template matching and its application to real-time object tracking. IPSJ Transactions on Computer Vision and Image Media, 46(9), 17–40 (in Japanese).

    Google Scholar 

  • Murphy-Chutorian, E., & Trivedi, M. M. (2008). Head pose estimation in computer vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (in press).

  • Oka, K., & Sato, Y. (2005). Real-time modeling of face deformation for 3D head pose estimation. In Proceedings of the IEEE international conference on automatic face and gesture recognition (pp. 308–320).

  • Otsuka, K., Sawada, H., & Yamato, J. (2007). Automatic inference of cross-modal nonverbal interactions in multiparty conversations: “who responds to whom, when, and how?” from gaze, head gestures, and utterances. In Proceedings of the international conference on multimodal interfaces (pp. 255–262).

  • Pantic, M., & Bartlett, M. (2007). Machine analysis of facial expressions. In I-Tech education and publishing (pp. 377–416).

  • Pantic, M., & Rothkrantz, L. (2000a). Expert system for automatic analysis of facial expression. Image and Vision Computing, 18, 881–905.

    Article  Google Scholar 

  • Pantic, M., & Rothkrantz, L. J. M. (2000b). Automatic analysis of facial expressions: the state of the art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1424–1445.

    Article  Google Scholar 

  • Russell, S., & Norvig, P. (2003). Artificial intelligence—a modern approach. Paris: Pearson Education.

    Google Scholar 

  • Sebe, N., Lew, M. S., Sun, Y., Cohen, I., Gevers, T., & Huang, T. S. (2007). Authentic facial expression analysis. Image and Vision Computing, 25(12), 1856–1863.

    Article  Google Scholar 

  • Tang, H., & Huang, T. S. (2008). 3D facial expression recognition based on properties of line segments connecting facial feature points. In Proceedings of the IEEE international conference on automatic face and gesture recognition.

  • Tian, Y. L., Kanade, T., & Cohn, J. F. (2001). Recognizing action units for facial expression analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), 97–115.

    Article  Google Scholar 

  • Tian, Y. L., Kanade, T., & Cohn, J. (2005). Facial expression analysis. Berlin: Springer.

    Google Scholar 

  • Tong, Y., Liao, W., & Ji, Q. (2007). Facial action unit recognition by exploiting their dynamic and semantic relationships. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(10), 1683–1699.

    Article  Google Scholar 

  • Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 511–518).

  • Wang, J., Yin, L., Wei, X., & Sun, Y. (2006). 3D facial expression recognition based on primitive surface feature distribution. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 1399–1406).

  • Xiao, J., Moriyama, T., Kanade, T., & Cohn, J. (2003). Robust full-motion recovery of head by dynamic templates and re-registration techniques. International Journal of Imaging Systems and Technology, 13, 85–94.

    Article  Google Scholar 

  • Xiao, J., Baker, S., Matthews, I., & Kanade, T. (2004). Real-time combined 2D+3D active appearance models. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (Vol. 2, pp. 535–542).

  • Yang, P., Liu, Q., Cui, X., & Metaxas, D. N. (2008). Facial expression recognition based on dynamic binary patterns. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition.

  • Zhang, W., Chen, H., Yao, P., Li, B., & Zhuang, Z. (2006). Precise eye localization with AdaBoost and fast radial symmetry. In Proceedings of the international conference on computational intelligence and security (Vol. 1, pp. 725–730).

  • Zhao, G., & Pietikainen, M. (2007). Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 915–928.

    Article  Google Scholar 

  • Zhu, Z., & Ji, Q. (2006). Robust real-time face pose and facial expression recovery. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 681–688).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiro Kumano.

Electronic Supplementary Material

VideoObject

VideoObject

VideoObject

VideoObject

VideoObject

VideoObject

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumano, S., Otsuka, K., Yamato, J. et al. Pose-Invariant Facial Expression Recognition Using Variable-Intensity Templates. Int J Comput Vis 83, 178–194 (2009). https://doi.org/10.1007/s11263-008-0185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-008-0185-x

Keywords

Navigation